Скачать

Конструирование биосенсора для регистрации P. aeruginosa АТСС 27853

РАЗДЕЛ 1. Биосенсоры

1.1       Механизмы, которые обеспечивают селективность и выборочность биосенсоров

1.2       Биосенсоры - принципы конструирования

1.3       Применение биосенсоров

РАЗДЕЛ 2. Материалы и методы

2.1 Автоматический вычислительно-измерительный компьютеризированный комплекс для исследования биоэлектрохимических межфазных границ

2.2 Электрохимическая ячейка

2.3 Электроды

2.4 Очистка и подготовка растворов

2.5 Стратегия создания биосенсора для регистрации P.AERUGINOSA АТСС 27853

РАЗДЕЛ 3. Результаты исследований

ВЫВОДЫ

СПИСОК ЛИТЕРАТУРЫ


ПЕРЕЧЕНЬ УСЛОВНЫХ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

ITO – оксид индия

Red–ox – окислительно - восстановительная реакция

ЦВАЗ - циклическая вольтамперная зависимость

АСКМ – антиген сыворотки крови мышей

ДЭС – двойной электрический слой


ВВЕДЕНИЕ

Регистрация патогенных микроорганизмов в растворах электролитов является одним из основных заданий медицины, биохимии и электрохимического анализа. С этой целью в мире разрабатываются биосенсорные устройства, которые дают возможность достаточно быстро и избирательно регистрировать патогенные штаммы микроорганизмов. Для этого используют потенциометрию, амперометрию и другие электрохимические методы. Важным элементом биосенсора является ионпроводящая мембрана, содержащая биологически активные компоненты. Синтез высоко проводящих наноразмерных по третьей координате полимерных платформ, структур, пленок или мембран для конструирования биосенсоров реализуют различными способами. В зависимости от поставленной задачи используют твердотельные ионообменные мембраны (1), электрохимически синтезируемые полимерные платформы (2, 13), электрохимическую самосборку полимолекулярных слоев с использованием α,ω–тиольного компоновщика (2,3). Разработка и внедрение в медицинскую практику новых биосенсоров отечественного производства на основе недорогих отечественных комплектующих с использованием их для регистрации сигнала импеданса, фарадеевской емкости, поляризационного сопротивления, тока, стохастических спектральных шумовых или электромагнитных сигналов межфазной границы электрод/биообъект является задачей чрезвычайно актуальной и своевременной.


РАЗДЕЛ 1. Биосенсоры

1.1    Механизмы, которые обеспечивают селективность и выборочность биосенсоров

Рассмотрим три типа биосенсоров - спектроэлектрохимический, ферментативный амперометрический и резистометрический (кондуктометрический). Биосенсоры - разновидность химических сенсоров - часто обладают отличной селективностью благодаря специфичности биологических реакций, но в них есть недостаток - малый срок службы. Применение химически селективных мембран в известной мере снижает посторонние препятствия. Увеличение селективности к определенному анализируемому раствору или классу таких растворов достигается путем использования спектроэлектрохимии химически селективных пленок (4), которые наносят на поверхность электрода. В этом случае для определения агента последний должен быть: 1) распределятся в пленке, которая обладает химической выборочностью; 2) окисляться или восстанавливаться на поверхности электрода при заданном потенциале; 3) его окисленная или восстановленная форма должна поглощать свет некоторой заданной длинны волны, используемой для определения. На рисунке 1 показана схема, которая демонстрирует работу спектроелектрохимического биосенсора.

Рисунок 1. Схема оптоэлектрохимического биосенсора. Обозначение: (Ä - вещества, которые проникают в пленку; Æ – вещества, которые проникают в пленку, но не поддаются Red–ox превращениям; o – вещества, которые проникают в пленку и поддаются Red–ox превращениям и дают сигнал, но не на "аналитической" длине волны; ► – вещества, которые проникают в пленку и поддаются Red–ox превращениям, продукты которых дают сигнал на "аналитической" длине волны).

На правую боковую стенку волновода нанесена тонкая пленка оксида индия (ITO), которая представляет собой оптически прозрачную поверхность. На нее наноситься тонкая мешка ионселективной пленки, которая обладает химической выборочностью. Свет, который проходит по оптическому волноводу в каждой точке, где происходит отражение, вызывает исчезающе слабое поле, которое проникает в пленку. Взаимодействие этого поля с анализируемым веществом в пленке приводе к затуханию света, который проходит по волноводу. Оно связано с концентрацией анализируемого вещества в пленке, которая выполняет две важных функции:

1 - она предварительно концентрирует анализируемое вещество вблизи поверхности электрода, и может быть определена спектроэлектрохимически в режиме нарушенного полного внутреннего отражения;

2 - она способствует устранению препятствий со стороны других веществ, поскольку слабое поле проникает на такую малую глубину, что оптический "пробник" касается только того вещества, которое находится в середине пленки. На практике анализируемое вещество, распределенное в пленке, можно зарегистрировать лишь в случае если оно вступает в Red–ox реакцию на поверхности электрода, что приводит к поглощению света на "аналитической длине волны". Его модулируют путем электрохимического циклирования между поглощающими и не поглощающими состояниями вещества. Рассмотрим работу ферментативного биосенсора (5). На рисунке 2 показана схема генерации сигнала при ферментативном катализе, который используется для регистрации микробиологического субстрата.


Рисунок 2. Схема генерации сигнала в амперометрическом ферментативном электроде, где Ф - фермент, М - медиатор, С - субстрат, П - продукт.

Фермент состоит из одной или больше пептидных цепей, которые образуют третичную структуру, стабилизированную электростатическими взаимодействиями, водородной связью и дисульфидными мостиками. Его каталитическая активность связана с активным центром, где идет реакция. Она специфическая в силу уникальной пространственной конфигурации и заряда этого центра. Ферменты реагируют с субстратом по следующей схеме:

E + S  ES  P + E, (1)

где: Е - фермент, S - субстрат фермента и Р - продукт ферментативной реакции. Кинетика этого процесса детально проанализирована Михаелисом - Ментеи (6). Скорость образования или исчезновения продукта описывается следующим уравнением:

–(dS/dP) = (dP/dt) = (ks(E)(S))/(((k2 + k3)/k1) + (S)) = (Vmax(S))/(Km + (S)), (2)

где: Vmax – максимальная скорость ферментативной реакции, Km – константа Михаелиса. При инверсии уравнения (2) оно позволяет получить зависимость Ханеса:


(1/V) = (Km/Vmax(S)) + (1/Vmax). (3)

Эти уравнения позволяют определить концентрацию количества субстрата, или количества фермента, которые участвуют в каталитической реакции.

В ферментативных амперометрических биосенсорах обычно измеряется скорость поглощения кислорода или разряда ферментативной реакции, которая нарабатывается в ходе реакций:

лецитин + Н2Про  холин + фосфористая кислота, (4)

холин + ПРО2 + 2Н2Про  бетаин + 2Н2ПРО2 , (5)

где: ChOx -фермент холиноксидаза.

Иммобилизация ферментов необходима для того, чтобы увеличить стабильность измерений, сделать более эффективную связь ферментативной реакции с преобразователем, локализировать реакцию в одном сенсоре, сделать возможными непрерывные измерения и доступным их математический анализ.

Иммобилизацию ферментов проводят ионообменом или ковалентным связыванием, поперечной сшивкой (сетка) или удерживанием в ловушках (молекулярные решетки, микроинкапсуляция). Ковалентное связывание наиболее эффективно из всех методов сохранения активности и увеличения долговечности ферментов. Достаточно важным является и связывание фермента с мембраной через соответствующие функциональные группировки. Локализация ферментативной реакции - также один из наиболее важных моментов в технологии создания сенсоров. Появилась возможность локализовать ферментативную реакцию там, где это наиболее выгодно: на мембране или непосредственно на электроде, где прямая реакция протекает без диффузионных ограничений. Возможность непрерывных измерений обеспечивается отсутствием необходимости замены фермента, в котором можно регенерировать после окончании реакции. Содержание ферментов в гелях достаточно детально описано для ферментов, встроенных в агарозу. Ферменты специфическим образом познают субстрат, косубстрат, кофактор, активатор и ингибитор. Ферменты способны осуществлять множество превращений с одинаковой эффективностью. Действие ферментов может приводить к мощному увеличению сигнала, который регистрируется. Ферменты могут быть иммобилизированы.

К резистометрическим сенсорам относят биосенсоры, в которых информационный сигнал пропорционален активной составляющей электрохимического импеданса Z на высокой частоте f. При высоких f комплексная диаграмма Арганда вырождается в точку на действительной оси импеданса Re Z и практически равняется сопротивлению раствора Rр. На рисунке 3 приведена схема тонкопленочного резистометрического биосенсора, использованного в работе (7), для определения глюкозы и мочевины путем измерения проводимости G в крови при частоте переменного тока f = 10 кГц.

Рисунок 3. Схема измерения проводимости тонкопленочного биосенсора, где I - рабочий электрод, II - электрод сравнения.

В ходе эксперимента авторы измеряли зависимость амплитуды исходного сигнала от концентрации субстрата. Для создания биоматрицы готовили растворы фермента и БСА в 20 мм калий-фосфатном буфере с рH=7,4 с конечными концентрациями 50-100 мг/моль и смешивали в соотношении 1:1, соответственно. Каплю смеси "фермент + БСА" наносили на поверхность одной пары электродов. На поверхность второй пары наносили раствор чистого БСА (электрод сравнения). Для полимеризации электроды окунали в атмосферу насыщенных паров глутарового альдегида на 30 мин., потом подсушивали мембраны на воздухе. Сигнал от электрода с мембраной БСА, которая расположена на том же кристалле, вычитался из сигнала на электроде с ферментативной мембраной. Разработанный биосенсор позволил определить глюкозу и мочевину в крови.

Во многих случаях для выявления биологической (в первую очередь, ферментативной) активности бактерий можно использовать амперометрические системы проточного инжекционного анализа и миниатюрные электрохимические детекторы. В этих случаях необходимо использование перистальтического насоса. Повышение скорости омывающего рабочий электрод анализируемого потока раствора приводит к увеличению регистрируемого сигнала (8).

1.2    Биосенсоры - принципы конструирования

биосенсор селективность биоэлектрохимический раствор

При конструировании тонкослойных биосенсоров стоит учитывать четыре основных фактора: 1) химическую и физическую природу ионселективной пленки; 2) характеристики оптических материалов; 3) особенности конструирования электрохимической ячейки; 4) тип аппаратуры, которая регистрирует.

Ионселективная тонкая пленка должна обеспечивать предыдущее концентрирование анализируемого вещества, подавление препятствий со стороны сопутствующих веществ, быть оптически прозрачной на измерительной длине волны света и электрохимически неактивной в определенном диапазоне потенциалов. При этом она не должна вступать в химическое взаимодействие с подкладкой из ITO, должна быть тонкой и однородной. Две из наиболее часто используемых подкладок представляют собой оксид кремния (SiО2), который готовится по методу "золь-гель", и поливиниловий спирт. Используют также нафионные пленки или ядерные лавсановые фильтры без добавок (9). В них вводят иономеры, которые создают ионообменные кластеры. В качестве иономеров используют полати(диметил диалиламмониевый хлорид) - ДД, полати(винилбензил триметиламмоный хлорид) - ВТХ, четвертичный полати(4-винилпиридин) 4В и полиакриловую кислоту - ПК. Оптимальная толщина пленки, которую наносят, 400 - 700 нм. Ранее (рис. 3.) представлена схема, которую рационально использовать при конструировании такого биосенсора. В литературе описаны сенсоры для определении аммиака и хлора с калиевым ионообменным стеклом ВК7, используемым в качестве оптически прозрачного плоского волновода. Возможности биосенсорной характеристики биологических, физико-химических, биохимических, биоматематических и фармако-клинических реакций поистине не ограниченные.

1.3    Применение биосенсоров

Наряду с созданием новых поколений биосенсоров для определения токсичных газов (10), полиэлектролита (11), разрабатываются полимерные платформы для энзимов, ДНК электродов (12). В последнее десятилетие получили развитие работы, направленные на создание микробных биосенсоров с иммобилизированными бактериями (6). Разрабатываются зонды для идентификации нуклеиновых кислот и других макромолекул (рис. 4) (6, 13).


Рисунок 4. Золотой многоэлектродный сенсор для определения множественного взаимодействия антиген-антитело.

Электрохимическую импедансную спектроскопию (ЭИС) в соединении с золотыми рабочими массивами (рис. 4) использовали для определения множественных взаимодействий антиген-антитело. Характеристики биосенсора определялись поверхностью антигена гепатита В (HbsАg). Участок биосенсора был подготовлен в результате иммобилизации антител на покрытую молекулами поверхность электродов. Были получены линейные зависимости сопротивления переноса электронов и концентрации HbsАg в диапазоне от 10 пкг•моль–1 до 1 нг•моль-1 с границей выявление 10 пкг• моль-1. Последующее развитие получили работы по созданию глюконометров (13). Для анализа соединения крови непосредственно в артериях и венах уже используется новое поколение иглообразных электродов из легированных сталей и индивидуальных индифферентных металлов (Au, Pt, Ti, Mo) специальной конструкции (14). Одним из перспективных направлений развития биосенсорных технологий есть использование в них высокопроводящих полимерных пленок, которые удерживают комплексы с переносом заряда на основе солей TCNQ (15).


РАЗДЕЛ 2. Материалы и методы

2.1 Автоматический вычислительно-измерительный компьютеризированный комплекс для исследования биоэлектрохимических межфазных границ

Для проведения эксперимента биоэлектрохимии необходимы как медленная регистрация вольтамперных и хроноамперных зависимостей, с чем, естественно, справляется потенциостат ПИ 50.1.1 укомплектованный потенциометрами марок ЛКД или ППД, которые пишут, так и их быстрая регистрация. Однако, поскольку механизм записи циклической вольтамперной зависимости (ЦВАЗ) потенциометрами марок ЛКД или ППД является механическим, то скорость быстродействия их небольшая и, естественно, они не могут перекрыть весь рабочий диапазон работы потенциостата ПИ 50.1.1, управляемого от внешнего генератора П – 8. При необходимости регистрации ЦВАЗ со скоростями развертки потенциала, которые превышают 0.1 В/c, с достаточно высокой точностью, эти измерения оказываются искаженными и их недопустимо использовать для анализа экспериментальных результатов. В данной работе нами предложен подход, который дает возможность превратить потенциостат ПИ 50.1.1 с программатором ПР–8 в высокоэффективный автоматический вычислительно-измерительный компьютеризированный комплекс (рис. 5) для исследования электрохимических и биоэлектрохимических межфазных границ и регистрации ЦВАЗ. С этой целью мы использовали осциллограф RigolDC 1022, который обладает необходимыми характеристиками. На вход Y мы вводим токовый сигнал j, на вход X сигнал напряжения U. В зависимости от целей эксперимента сигнал синхронизации может быть задан от любого из 8 шагов программатора. Запись экспериментальных данных осуществляется в файл. Записываются триады–время t, ток j и поляризация Е.


Рисунок 5. Автоматический вычислительно-измерительный компьютеризированный комплекс для исследования электрохимических и биоэлектрохимических межфазных границ.

На примере измерений циклических вольтамперных зависимостей для разных межфазных границ, в широком диапазоне потенциалов поляризации и скоростей развертки по потенциалу, проверена работоспособность предложенной установки. Использование осциллографа Rigol DC 1022 позволило (рис. 5) перекрыть весь рабочий диапазон параметров потенциостата ПИ 50.1.1.

2.2 Электрохимическая ячейка

Для єксперимента использовалась специально сконструированная фторопластовая электрохимическая ячейка, показанная на рисунке 6. Она отвечает всем требованиям, предъявляемым к измерениям электрохимических вольтамперных, хроноамперных и поляризационных исследований. Ячейка полностью герметична и предназначена для разнообразных нанобиоэлектрохимических исследований в инертной атмосфере аргона или гелия марки о.с.ч.

Рис. 6. Герметизированная ячейка для нанобиоэлектрохимических измерений: 1 – рабочий электрод; 2 – тефлоновая втулка; 3 – вспомогательный электрод; 4 – тефлоновый стакан; 5 – тефлоновая крышка; 6 – ввод для гелия; 7 – капилляр для отвода газов; 8 – стеклянный капилляр Лугина–Гебера; 9 – мешалка; 10 – электрод сравнения; 11 – компенсационный электрод.

Перед измерениями фторопластовую ячейку промывали раствором хромовой смеси, 1 М раствором Н2SO4, 24 ч. вымачивали в бидистиллированной воде, промывали раствором "пираньи" (16) для снятия всех органических загрязнений и потом трижды промывали дистиллированной водой.

Электрохимическая ячейка (рис. 6.) с четырьмя электродами: рабочим игольчатым Pt с поверхностью 0.53 см2; основным вспомогательным Pt, расположенным в отдельном отсеке, с площадью поверхности 0.45 см2, диаметром 0.5 мм; вторым вспомогательным Pt – электродом, который использовался для увеличения быстродействия работы потенциостата. Электродом сравнения служил стандартный серебрянохлорный электрод сравнения (х.с. э.) с Ест = 0.226 В при 20 °С, находящийся в дополнительном отсеке и соединенный с отсеком рабочего электрода через тефлоновый шлиф, во избежание влияния Сl – ионов на электродный процесс. В качестве стандартного раствора для серебрянохлорного электрода использовали раствор насыщенного хлористого калия. Все потенциалы в данной работе приведены относительно х.с.э.

2.3 Электроды

Как материалы, используемые в подкладках сенсорных электрохимических устройств, используют чистые Pt, Au, SiО2 и графитовые материалы квалификации о.с.ч. 00 или о.с.ч. 000. Биосенсоры для особых целей содержат подкладки из сверхчистых монокристаллов металлов или оксидов, которые содержат ориентированы индексные грани, например Pt (001), Pt (010) или Pt (111). Pt обладает рядом достоинств, таких как воспроизводимость электрохимических свойств поверхности электрода, возможность эффективного снятия с её поверхности адсорбированных примесей, широким электрохимическим окном – широкой двойнослойной областью потенциалов в растворах индифферентных электролитов (малые токи заряжания). Подготовка заключалась в выдержке Pt 00 в течении 20 мин. в концентрированной HNO3, в тщательном промывании в бидистилляте. После этого снятие органических примесей и физических загрязнений осуществляли в растворе пираньи 1:1 (H2SO4 конц/Н2О2 35%) при времени выдержки 40 мин, Т=200С. Эта процедура приводила к повышению активности поверхности Pt–электрода. Такая обработка дала возможность снять адсорбированные вещества с поверхности электрода, растворить поверхностный оксид, стандартизировать подготовку электродов и добиться воспроизводимости измерений.

Для очистки Au и Pt электродов от загрязнений и органических примесей, антител и антигенов использовали раствор "пираньи", который включал серную концентрированную кислоту H2SO4 и перекись водорода H2O2 в соотношении 8:3. Электроды выдерживали в этом растворе в течение 30 минут при 40 0С.

Активацию Au и Pt электродов проводили в растворе концентрированной азотной кислоты.

2.4 Очистка и подготовка растворов

Все использованные в экспериментах реактивы Kсl, Nа2нро4, Нno3 были марки х.ч. Растворы готовили на дистиллированной воде. Очистку растворов осуществляли наложением прямоугольных импульсов потенциала на рабочий электрод от потенциостата ПИ 50.1.1, на внешний вход которого от внешнего программатора ПР–8 подавались управляющие импульсы напряжения прямоугольной формы. С помощью дозатора UNI 2010 готовили растворы АСКМ (сыворотки крови мышей, вакцинированных белковым полисахаридом фракцией синегнийной палочки) в PBS. Объем фонового раствора электролита PBS в ячейке составлял 40 мл.

Все измерения проводились при 20 0с. В качестве фонового раствора электролита был выбран фосфатный буферный раствор (PBS) следующего состава: 8 г/л NaСl, 0,2 г/л KСl, 1,44 г/л Na2НРО4, 0,24 г/л KН2РО4, рН = 7,4, приготовленный на бидистиллированной воде. Все потенциалы в работе приведены относительно стандартного серебрянохлорного электрода сравнения.

2.5 Стратегия создания биосенсора для регистрации P.AERUGINOSA АТСС 27853

Основываясь на мировых фундаментальных исследованиях создания и конструирования биосенсорных систем для регистрации разных бактериальных штаммов и экспериментальных работах (17-26) для создания биосенсора на P. aeruginosa АТСС 27853 была предложена следующая структурная схема построения трандьюсера:


Рисунок 7. Структурная схема построения трандьюсера.


РАЗДЕЛ 3. Результаты исследований

На рисунке 8 показана схема созданного нами биосенсора на P.aeruginosa АТСС 27853 с наноразмерной по координате электрохимической реакции биохимически активной мембраной.

Рисунок 8. Схема компановки биосенсора с нанопреходами по координате электрохимической реакции для регистрации P. aeruginosa АТСС 27853.

Взаимодействие антиген-антитело приводит к изменению электростатических характеристик ДЭС, следствием чего является рост тока во внешней цепи электрохимической ячейки.

Поскольку большая доля биосенсоров, в состав которых входит трандьюсер, является электрохимическими устройствами, то их работоспособность и воспроизводимость измеряемых данных в значительной мере зависит от материала рабочего электрода, его чистоты. Для массового производства биосенсоров можно использовать Pt о.с.ч. 00 и Au о.с.ч. 00.

Нами проведено изучение электрохимического поведения Pt о.с.ч. 00 и Au о.с.ч. 00 в фосфатном буферном растворе (PBS),который использовался в качестве поддерживающего электролита. На рис. 9 показаны ВАХ (вольтамперные характеристики) от межфазной границы раздела Pt/ PBS в зависимости от скорости развертки (V/s) по потенциалу Е. При медленных развертках ЦВАЗ имеет один катодный максимум тока на катодной волне, а сами токи являются токами заряжения. С увеличением скорости развертки величина регистрируемых токов увеличивается, а токи определяются электрической емкостью ДЭС (двойного электрического слоя) межфазной границы. При больших скоростях развертки по потенциалу на ЦВАЗ не наблюдается токовых максимумов, а анодный и катодный ток плавно увеличивается или уменьшается в зависимости от потенциала. Анодная и катодная зависимости ВАХ обусловлены двумя процессами заряжения. Pt после подготовки активная, на что указывают большие анодные и катодные токи электродных процессов, которые реализовываются на ней. Однако форма и характер этих кривых указывает на то, что она находится в состоянии окисления. На рисунке 9 показаны ЦВАЗ при малых скоростях развертки по потенциалу в увеличенном масштабе по сравнению с рисунком 10. При самой медленной скорости развертки по потенциалу в диапазоне от 0.000 до 0.800 В через межфазную границу текут наноамперные токи, указывая на хорошую поляризуемость Pt электрода и на то, что для анодной волны протекают лишь токи заряжения.

Рисунок 9.ЦВАЗ Pt/ PBS. Рабочий электрод Pt 00. S = 0.53 см2. Электрод сравнения хлорсеребряный. Насыщен. KСl. Крутизна 1 мА/V. 1 – V/s = 5•100; 2 – V/s = 5•10-1; 3 – V/s = 5•10-2; 4 – V/s = 5•10-3.


Параметры потенциостата:

mVTmVS (V/s)
шаг 1010 сшаг 511005·10(0)
шаг 201 сшаг 605·10(0)
шаг 301 сшаг 711005·10(0)
шаг 401 сшаг 8-3005·10(0)