Источники и особенности радиационного загрязнения окружающей среды
Федеральное агентство по образованию
Государственное учреждение высшего профессионального образования
Санкт-Петербургский Торгово-Экономический Институт
Кафедра Физического Воспитания и БЖД
Реферат
на тему:
«Источники и особенности радиационного загрязнения окружающей среды»
Выполнил: студент группы 343 Бичан Георгий
Проверил: Волокобинский М.Ю.
СПб.
2008
CОДЕРЖАНИЕ
1. ОСНОВНЫЕ ИСТОЧНИКИ РАДИОЭКОЛОГИЧЕСКОЙ ОПАСНОСТИ
2, ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА. БИОЛОГИЧЕСКИЕ АСПЕКТЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ
3. СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ РАДИАЦИОННОГО МОНИТОРИНГА
1. ОСНОВНЫЕ ИСТОЧНИКИ
АДИОЭКОЛОГИЧЕСКОЙ ОПАСНОСТИ
Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. Ниже описываются основные источники ионизирующего, излучения (ИИЙ), а также тот вклад, который они вносят, в среднем, в облучение населения.
Космическая радиация и космические радионуклиды. Космическое пространство пронизывается ионизирующим излучением различного происхождения и энергии. Первичная космическая радиация солнечного или галактического происхождения состоит, в основном, из протонов с энергией, изменяющейся в очень широком диапазоне. Вторичная космическая радиация включает продукты взаимодействия первичной радиации и атмосферы Земли. Глобальная годовая эффективная доза от космической радиации на одного человека составляет около 0,38 мЗв (38 мбэр), однако сильно зависит от абсолютной высоты (например, около 0,27мЗв (27 мбэр) на уровне моря (г. Мехико) и около 2 мЗв (200 мбэр) на высоте 3,9 км над уровнем моря (Ла-Пас, Боливия)). Космическое излучение в результате взаимодействия с элементами в атмосфере образует разнообразные радионуклиды. Наиболее значимым является углерод-74, который, попадая в организм, приводит к образованию годовой индивидуальной эффективной дозы около 0,012мЗв (1,2мбэр) (1).
Земная радиация. Только долгоживущие радионуклиды с периодом полураспада, соизмеримым с возрастом Земли, до сих пор существуют в ее веществе. Воздействие земной радиации может осуществляться тремя путями: прямое воздействие внешнего облучения, внутреннее облучение при потреблении пищи и внутреннее облучение при вдыхании воздуха. Годовая индивидуальная эффективная доза от внешнего облучения составляет около 0,46мЗв (46мбэр), хотя эта величина может значительно изменяться в зависимости от местных геологических условий; в некоторых регионах доза может оказаться больше в 10 раз, а для ряда ограниченных территорий - в 100 раз. Доза, вызванная поступлением естественных радионуклидов из воздуха, продуктов питания и воды (исключая вдыхания радона), составляет около 0,23 мЗв (23 мбэр); калий-40 вместе с радионуклидами уранового и ториевого рядов составляет около 75% от этой дозы. Доза от калия-40 варьируется обычно незначительно, тогда как доза от урана и тория может изменяться значительно (2)
Радон представляет собой наиболее опасный природный источник радиации (3). Он является инертным газом и представлен двумя изотопами: радоном-222, радиологически наиболее значимым (продукт распада радия-226), и радоном-226, который часто называют тороном (продукт распада радия-225). Уровень концентрации радона в помещениях зависит от скорости его образования, определяемой концентрацией радия-226 в почве и других материалах, а также от интенсивности, с которой он переносится в воздух помещений и удаляется из них. На эти процессы влияют многие факторы (местные геологические условия, характеристики почвы, строительные материалы, тип постройки, тип вентиляционной системы и т.д.). В зависимости от этих факторов эффективная доза от вдыхания радо-на-222 и его дочерних продуктов оценивается в 1,2 мЗв (120 мбэр) и примерно в 0,07 мЗв (7 мбэр) - от вдыхания торона. Однако в некоторых географических районах индивидуальная доза может в 10 раз превышать среднюю. Особенности геологического строения земной коры в регионе, а также тип постройки могут оказаться причиной увеличения дозы внутри помещения в несколько сот раз по сравнению со средними значениями. Поэтому снижение поступления радона в помещение является одной из главных задач в области радиационной экологии.
Основным путем решения этой задачи является оценка потенциальной радоноопасности территорий застройки с целью определения требуемой радонозащиты зданий и сооружений. Концептуально подход к оценке потенциальной радоноопасности очевиден. Он должен быть основан на анализе фактических значений объемной активности (OA) радона в воздухе помещений, изучении зависимости между плотностью потока радона с поверхности грунта и OA радона в помещениях и, наконец, установлении закономерностей процесса выделения радона с поверхности земли.
Искусственные источники. Определение групп населения, подвергающихся воздействию облучения от искусственных источников, и оценка степени этого облучения производятся исходя из сведений о способе производства этих источников и характере их использования. Персонал, непосредственно связанный с производством и применением источников радиации, подвергается воздействию облучения в процессе работы. Население подвергается как прямому (например, в медицине), так и косвенному (например, в результате выброса радиоактивных материалов в окружающую среду при штатной работе ядерных установок или в аварийных ситуациях) воздействию.
В медицине ионизирущее излучение широко применяется как для диагностики, так и при лечении травм и заболеваний (рис.1). Индивидуальная годовая эффективная доза в Европе при диагностике (рентгеновское излучение при медицинских обследованиях) составляет около 1,1 мЗв (ПО мбэр). Средние дозы в европейских странах сильно меняются (от 0,4 до 1,6 мЗв, или 40-160 мбэр). Индивидуальная эффективность терапии составляет около 0,7 мЗв (70 мбэр) (исключая воздействие на органа или ткани, специально подвергшиеся терапии) и значительно меняется по странам.
Атмосферные испытания ядерного оружия. Атмосферные испытания ядерного оружия начались в 1945 г. и продолжались до 80-х гг.; более интенсивные периоды испытаний приходились на 50-е годы и начало 60-х годов. В результате таких испытаний в атмосферу были выброшены огромные количества радиоактивных продуктов. Прежде чем выпасть на земную поверхность, они равномерно рассеялись в стратосфере в глобальном масштабе. Во время испытаний ядерного оружия в атмосферу выбрасывались самые разнообразные продукты деления, образовавшиеся при взрыве, но современное глобальное загрязнение представлено наиболее долгоживущими радионуклидами. В основном это цезий-737 и стронций-90, имеющие период полураспада около 30 лет. Наиболее значительное облучение происходило в периоды испытаний ядерного оружия; с прекращением испытаний в 60-х гг. оно сильно уменьшилось. Индивидуальная годовая эффективная доза в 7996 г. на 40-50° северной широты (где уровни глобального загрязнения самые высокие) составляет около 0,009 мЗв (0,9 мбэр); при этом основной вклад вносит цезий-757 (4).Удобрения. Большинство разрабатываемых фосфатных месторождений содержат уран в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон. Удобрения также радиоактивны и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае обычно незначительно, но возрастает, если удобрения вносят в землю в жидком виде или содержащие фосфаты вещества скармливают скоту.
Другие источники. К другим источники облучения относится производство атомной энергии в мирных и военных целях, исключая топливный цикл (добыча урана, его обогащение, изготовление топлива, работа реактора, регенерация топлива и т.д.), производство ядерного оружия и радиоизотопов, падение спутников с ядерными двигателями, использование промышленных источников радиации (например, промышленная радиография, стерилизация, скважинный каротаж) и т.д. В целом, за исключением крупных аварий (таких как Чернобыльская), влияние этих источников на формирование полной индивидуальной дозы по сравнению с другими источниками облучения невелико. По состоянию на конец 80-х - начало 90-х гг. годовая индивидуальная эффективная доза, вызванная производством атомной энергии, оценивается в 0,1 мкЗв, а вызванная производством радиоизотопов - в 0,02 мкЗв. Несколько более высокие дозы получают люди, проживающие вблизи ядерных установок. Так, проживающие вблизи работающих ядерных реакторов, могут получить дозу до 1-20 мкЗв, проживающие вблизи крупных регенерационных установок - до нескольких сот мкЗв (несколько десятков мбэр). Источником облучения являются и многие общеупотребительные предметы, содержащие радиоактивные вещества. Едва ли не самый распространенный - часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую обусловленную утечками на АЭС. Обычно при изготовлении таких часов используют радий, что приводит к облучению всего организма, хотя на расстоянии 1 мот циферблата излучение в 10 ООО слабее, чем на расстоянии 7 см. Сейчас пытаются заменить радий тритием, облучение от которого меньше. Радиоактивные изотопы используют также в светящихся указателях входа-выхода, компасах, телефонных дисках, прицелах и т.д.
При изготовлении особо тонких оптических линз применяют торий, который может привести к существенному облучению хрусталика глаза. Для придания блеска искусственным зубам широко используется уран, который может служить источником облучения тканей полости рта.
Источниками рентгеновского излучения являются цветные телевизоры, однако при правильной настройке и эксплуатации дозы облучения от современных их моделей ничтожны. При ежедневном просмотре передач по 4 ч доза за год составит 7 мбэр. Рентгеновские аппараты для проверки багажа пассажиров в аэропортах также практически не вызывают облучения пассажиров.
Расчетные годовые дозы облучения человека показаны на рис.2 (5).
В результате реализации в послевоенные десятилетия широкомасштабных программ использования атомной энергии в целях развития военной техники и мирных технологий существенно возросло влияние антропогенных источников радиоактивных загрязнений окружающей среды.
■ земная радиация
■ космическая радиация
Рис.. Расчетные годовые дозы облучения человека: 1- космические лучи (0,37мЗв); 2 - радионуклиды (0,015 мЗв); 3 - калий-*0 (0,33 мЗв); 4 - другие элементы (из серии V-238, Th-232) (0,4мЗв); 5-радон (1,3 мЗв); 6 - рубидий 87 (0,006мЗв)
Так, только на Центральном (Новая Земля) и Семипалатинском испытательных полигонах за это время было произведено 586 ядерных взрывов (атмосферных, подводных и подземных). Общее же количество ядерных испытаний и взрывов за период с 1949 по 1990 годы составило 715 (б).
По данным Госатомнадзора России, в настоящее время на территории России расположено свыше 60 радиационно-опасных для населения и окружающей среды промышленных объектов, главным образом, предприятий ядерно-топливного и ядерно-оружейного циклов. К концу 1993 года на территории России работало 9 атомных электростанций с 29 энергоблоками и реакторами различных типов. На Европейской части России атомными электростанциями вырабатывается около 25% всей электроэнергии. Поскольку более эффективной альтернативы атомной энергетике в настоящее время нет, в ближайшей перспективе предусматривается увеличение доли атомных электростанций в выработке электроэнергии до 35-37 %.
С ростом количества ядерных реакторов и взаимодействующих с ними обогатительных комбинатов повышается опасность того, что число стран, владеющих ядерным оружием, увеличивается (7). Именно по этой причине была создана международная организация под эгидой ООН-МАГАТЭ (Международное Агентство по Атомной Энергии). Потенциал разрушающего военного применения ядерных технологий привел общественность к учреждению дорогого и сложного органа контроля.
Вместе с тем, атомные электростанции являются потенциальными источниками катастрофической радиоэкологической опасности - особенно в случае запроектных аварий с разрушением активной зоны реакторов (6-7-й класс по шкале МАГЛТЭ). Примером такой аварии является авария на Чернобыльской АЭС (1986 г.) (рис.3), приведшая к крупномасштабным загрязнениям окружающей среды в 12 областях с населением более 5 млн.' человек только на территории Российской Федерации, большим материальным потерям, серьезным медико-биологическим и социально-экономическим последствиям. Суммарная активность всего радиоактивного материала, выбросы которого произошли во время аварии, в настоящее время составляет, согласно оценкам, около 12»1018 Бк, включая около 6-7»1018 Бк активности инертных газов (количество конкретного радионуклида выражается количественной величиной "активность", которая соответствует числу спонтанных ядерных превращений, испускающих излучение в единицу времени). В выбросах содержалось около 3-4% топлива, находившегося в реакторе во время аварии, а также до 100% инертных газов и 20-60% летучих радионуклидов. Эта современная оценка активности содержащегося в выбросах материала превышает оценку активности, предложенную СССР, которая была сделана на основе суммирования активности материала, выпавшего на территории стран бывшего СССР (8). Тридцатикилометровая зона повышенного риска вокруг Чернобыля обрекла город на неопределенное будущее без каких-либо надежд на восстановление внутри десятикилометровой зоны. По подсчетам советского правительства, ущерб от катастрофы составил более 14 миллиардов долларов. Западные источники называют более высокие цифры (9). По официальным данным, к апрелю 2000 года количество погибших в результате Чернобыльской катастрофы составило порядка 55 ООО человек. По масштабам воздействия на окружающую среду, здоровье и экономику Чернобыль также остается самой большой аварией в истории атомной индустрии.
Значительную группу радиационно-опасных объектов составляют объекты Минобороны России, в том числе атомные подводные лодки и специальные виды вооружений.
В процессе функционирования радиохимических предприятий, атомных реакторов АЭС, судов атомного флота и некоторых других ядерно-физических установок образуется большое количество радиоактивных отходов и отработанных материалов. Интенсивность накопления радиоактивных отходов возрастает в связи с истечением плановых сроков эксплуатации энергетических ядерных реакторов, снятием с вооружения большого количества атомных подводных лодок и ликвидацией значительного количества ядерных боеголовок.
Проблема безопасного обращения с радиоактивными отходами и надежной защиты биосферы от их воздействия до сих пор не нашла удовлетворительного решения. Временные хранилища, в которых они сегодня находятся, не всегда отвечают требованиям безопасности.
Так, в результате ряда инцидентов, связанных с неудовлетворительным обращением с радиоактивными отходами в Челябинском производственном объединении "Маяк", оказались существенно загрязненными несколько районов Челябинской и Свердловской областей, в которых проживает более полумиллиона человек. Аналогичная ситуация имела место и в г. Виндскейл (переименован в Сэллафилд) в Великобритании (10). Поэтому хранилища радиоактивных отходов и места их захоронения требуют тщательного наблюдения и контроля как потенциальные высокоактивные источники радионуклидного загрязнения среды.
Старение оборудования, финансовые и материально-технические трудности в проведении плановых профилактических и ремонтных работ, снижение уровня технологической дисциплины, отток квалифицированных кадров приводят к повышению вероятности возникновения аварийных ситуаций на радиационно-опасных объектах.
Внедрение радиационных технологий и методов в промышленность, медицину и науку привело к широкому распространению радиоизотопных источников. В настоящее время примерно в 13 тысячах учреждений и предприятий эксплуатируются источники ионизирующих излучений. Общее их количество по данным Госатомнадзора России превышает 700 тысяч единиц, а активность некоторых из них достигает десятков кКюри. Как свидетельствует международная практика, такие источники могут быть причиной серьезных радиационных ситуаций, причиняющих значительный вред здоровью населения и окружающей среде. Социально-политические и экономические изменения в стране создали дополнительные предпосылки для возникновения радиоэкологических ситуаций, связанных с попаданием радиоактивных веществ этих источников в окружающую среду в результате небрежного обращения с ними или преднамеренного вскрытия изотопных источников.
Во все более возрастающих масштабах осуществляются перевозки радиационно-опасных грузов по территории страны, в том числе в связи с реализацией программы частичного уничтожения ядерного оружия в соответствии с международными договоренностями. Существенное увеличение общего числа случаев нарушения правил безопасности на транспорте, отмечаемое в последнее время в стране из-за падения уровня трудовой и технологической дисциплины, требует повышения эффективности радиационного контроля на транспорте.
В настоящее время создалась реальная угроза радиоактивного загрязнения морей в экономической зоне страны. В декабре 1992 года Россия официально признала факты захоронения радиоактивных отходов и отработанных ядерных реакторов атомных подводных лодок и ледоколов на дне морей. По состоянию на начало 1993 года в 20 местах захоронения в Баренцевом, Охотском, Карском и Японском морях затоплено 17 ядерных реакторов, несколько сотен контейнеров с радиоактивными отходами и слиты тысячи кубометров жидких радиоактивных отходов. Радиоактивное загрязнение омывающих Россию морей обусловлено также сбросами и захоронениями радиоактивных отходов Японией (Японское море), Англией, Францией и Бельгией (Балтийское, Баренцево и Карское моря). Контрольные замеры, проводимые радиологическими службами Северного и Тихоокеанского флотов, фиксируют превышения фоновых уровней по цезию-137 до 10-15 раз, а также появление других техногенных радионуклидов (например, кобальт-60), что может быть связано с процессами разрушения конструкционных элементов затопленных реакторов с невыгруженным топливом. Следует отметить, что официальное признание фактов морских захоронений и сливов радиоактивных отходов означает и принятие Россией ответственности за ликвидацию их возможных последствий.
Одним из источников возможных радиационных загрязнений территории страны являются трансграничные (главным образом атмосферные) переносы радиоактивных веществ с сопредельных территорий. Примером могут быть систематически фиксируемые выпадения радиоактивных загрязнений в различных местах нашей территории после проведения продолжающихся до сих пор испытательных ядерных взрывов на полигоне Лобнор, расположенном на примыкающей территории Китая. Всего там было произведено около 50 ядерных взрывов (11).
Радионуклидное загрязнение окружающей среды происходит также в результате проникновения в нее и радионуклидов естественного происхождения. К источникам таких загрязнений и соответствующих дозовых нагрузок на население относятся тепловые электростанции, работающие на угле. По данным сравнительных исследований, уровни дозовых нагрузок от этих станций могут в десятки раз превышать уровни, создаваемые атомными станциями при их нормальной эксплуатации. Активность радионук-лидных выбросов крупных электростанций, работающих на угле, составляет от 8 до 20 Кюри в сутки.
Источниками радиоактивного загрязнения, территорий и поверхностных вод естественными радионуклидами являются также отвалы горных пород на горнодобывающих и перерабатывающих предприятиях. Причем радиоэкологическую опасность представляют не только предприятия по добыче и переработке расщепляющихся материалов, но и предприятия добычи неурановых руд и органических энергоносителей. Отмечены случаи крупномасштабных радиационных загрязнений естественными радионуклидами в районах добычи нефти и газа (например, на нефтепромыслах Ставропольского края). Добавим к этому усиливающуюся политическую нестабильность в мире. Все это означает, что вторая глобальная авария АЭС чернобыльского масштаба может случиться в пределах 10-20 лет (12). Это вызывает необходимость организации действенного контроля за техногенным проникновением радионуклидов естественного происхождения в биосферу.
Таким образом, представленные материалы позволяют констатировать, что опасность, которую представляет собой ионизирующее излучение, обуславливает необходимость осуществления не просто контроля, а непрерывного наблюдения (мониторинга), как за источниками ионизирующих излучений, так и за их распространением в окружающей среде.
2, ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА.
БИОЛОГИЧЕСКИЕ АСПЕКТЫ РАДИАЦИОННОЙ
БЕЗОПАСНОСТИ
Жизнь на Земле возникла и развивалась на фоне ионизирующей радиации. Поэтому биологическое действие ее не является каким-то новым раздражителем в пределах естественного радиационного фона. Считают, .что, часть наследственных изменений и мутаций у животных и растений связана с радиационным фоном (13).
В основе повреждающего действия ионизирующих излучений лежит комплекс взаимосвязанных процессов. Ионизация и возбуждение атомов и молекул дают начало образованию высокоактивных радикалов, вступающих в последующем в реакции с различными биологическими структурами клеток. В повреждающем действии радиации важное значение имеют возможный разрыв связей в молекулах за счет непосредственного действия радиации, а также внутри- и межмолекулярной передачи энергии возбуждения. В последующем развитие лучевого поражения проявляется в нарушении обмена веществ с изменением соответствующих функций.
Реакция человеческого организма на ионизирующее облучение зависит от дозы и времени облучения, размера поверхности тела, подвергшегося облучению, типа излучения и мощности дозы. Степень чувствительности человеческих тканей к облучению различна. Чувствительность их в порядке уменьшения следующая: кроветворные органы, половые органы, ткань кожного покрова внутренних и наружных органов, ткань мозга и мышечная ткань, костные и хрящевые клетки, клетки нервной ткани. Чем моложе человек, тем выше его чувствительность к облучению. Человек в возрасте 30-50 лет наиболее устойчив к облучению.
Для категорий облучаемых лиц устанавливаются три класса норма-
тивов: '
- основные пределы доз (ПД), приведенные в табл.1;
- допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз: пределы годового поступления (Я/77), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и другие;
- контрольные уровни (дозы, уровни, активности, плотности потоков и др.). Их значения должны учитывать достигнутый уровень радиационной безопасности и обеспечивать условия, при которых радиационное воздействие будет ниже допустимого (14).
Устанавливаются следующие категории облучаемых лиц:
- персонал (группы ,4 и Б);
- все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.
- Таблица 1
Нормируемые | Пределыдоз | ||
величины* | Персонал (группа А)** | Население |
|
Эффективная доза | 20 мЗв в год в среднем | 1 мЗв в год в среднем |
|
за любые последовательные | за любые последователь- |
| |
5 лет, но не более 50мЗв | ные 5 лет, но не более |
| |
в год | 5мЗввтод |
| |
Эквивалентная доза за год: |
| ||
в хрусталике глаза*** | 150мЗв | 15мЗв |
|
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Источники радиации
Лекция 5Радиоактивность - самопроизвольный распад, сопровождающееся испусканием потока заряженных a-частиц (ядра гелия), b (электроны) и
- Какие риски для здоровья появились в связи с развитием информационных систем
1. Влияние ПЭВМ на здоровье человека2. Рекомендации по уменьшению вредного воздействия компьютера на человека3. Как бороться с мобильным
- Кислотные дожди
Суть явленияПоследствия воздействия кислотных дождей на среду и здоровье человекаВыводыИспользованная литература ВведениеПод попу
- Классификация природных чрезвычайных ситуаций
В своем реферате я хочу рассмотреть классификацию природных чрезвычайных ситуаций.Стихийные бедствия угрожают обитателям нашей плане
- Коллективные спасательные средства
Исходя из статистики, каждый час экипаж одного судна в мире сталкивается с чрезвычайной ситуацией, как то: пожар, посадка на мель, челов
- Лавина
ПЛАН1. Лавины 2. Типы лавин 3. Признаки лавинной опасности 4. Правила, обеспечивающие безопасность при посещении и освоении гор1. ЛАВИНЫ«
- Лазерное излучение
1. Физическая сущность лазерного излучения2. Воздействие лазерного излучения на организм3. Нормирование лазерного излучения4. Методы
Copyright © https://referat-web.com/. All Rights Reserved