Скачать

Испытание материалов на прочность при ударе

Несколько сотен лет назад весь объем научных знаний был столь мал , что один человек мог подробно ознакомиться почти со всеми основными научными идеями . Накопление научной информации начиная с эпохи Возрождения происходило так быстро , что представление об ученом , как о человеке , обладающем универсальными знаниями , давно уже потеряло смысл . В настоящее время ученые делятся на физиков , химиков , биологов , геологов и т.д.

Физик старается познать самые элементарные системы в природе . Сделанные физиками открытия не только расширяют наши знания об основных физических процессах , но часто играют решающую роль в развитии других наук . Законы физики управляют всеми физическими процессами.

Поговорим о законах сохранения .Из законов сохранения наибольший интерес представляет тот , что связан с энергией . Мы слышим , что потребление энергии постоянно растет , и знаем , что недавняя нехватка энергии оказала влияние как на повседневную жизнь , так и на международные отношения . Представление об энергии связано , по-видимому , с нефтью , с углем , с падающей водой , с ураном . Энергия не только приводит в движение автомобили и обогревает дома ; она также необходима , например , для производства металлов и удобрений . Все живые существа в буквальном смысле поедают энергию , чтобы поддержать жизнь . Из рекламных проспектов мы знаем , что определенные продукты питания для завтрака могут сообщить “ заряд энергии “ , чтобы начать трудовой день .

Удивительно , что , несмотря на повсеместную большую роль энергии , это понятие оставалось неясным вплоть до середины ХIХ века . Галилей , Ньютон и Франклин не знали , несмотря на всю их искушенность , что физическая величина , которую теперь называют энергией , может быть определена так , чтобы она всегда сохранялась . Возможно , они не пришли к такой мысли потому , что это понятие вовсе не очевидно . Энергия проявляется во множестве различных форм . Движущийся автомобиль обладает энергией . Неподвижная батарейка карманного фонаря обладает энергией . Камень на вершине утеса обладает энергией . Кусочек сливочного масла обладает энергией . чайник кипятка обладает энергией . Солнечный свет обладает энергией . Энергия , проявляющаяся во всех этих различных формах , может быть определена таким способом , что при любом превращении системы полная энергия сохраняется . Однако для системы , которая никогда не претерпевает никаких изменений , разговор о содержании энергии беспредметен . Только при переходе из одной формы в другую или из одного места в другое представление об энергии становиться полезным .

Полная энергия

Потенциальная энергия . Слово “энергия” рождает в сознании образы бушующих волн , мчащихся автомобилей , прыгающих людей и интенсивной деятельности любого типа . Между тем существует и другой тип энергии . Она прячется под землей в нефтеносных пластах или таится в водохранилищах перегороженных плотинами каньонов . Аккумулятор автомобиля или неподвижная мышеловка в действительности наполнены запасенной энергией , которая готова выплеснуться наружу и воплотиться в движущиеся формы . Такие неподвижные формы энергии называют потенциальными как бы специально для того , чтобы подчеркнуть , что их потенциально можно превратить в энергию движения . В действительности любую формы энергии можно назвать потенциальной . Обычно , однако , термин потенциальная энергия относиться к энергии , запасенной в деформированном теле или в результате смещения тел в некотором электрическом , магнитном или гравитационном силовом поле . Если тела смещаются из определенных положений , а затем возвращаются обратно , система снова приобретает свою первоначальную потенциальную энергию .

Мы рассмотрим несколько различных видов потенциальной энергии . В каждом случае кинетическая работа или работа могут быть превращены в скрытую форму энергии , а затем восстановлены обратно без потерь .Более того мы определим потенциальную энергию таким образом , чтобы во всех случаях полная энергия оставалась постоянной . При совершении работы или при исчезновении кинетической энергии потенциальная энергия будет увеличиваться . В таких процессах энергия будет сохраняться , что и неудивительно , поскольку само понятие потенциальной энергии вводится именно для этой цели . В действительности , конечно , в большинстве систем рано или поздно исчезают и потенциальная , и кинетическая энергия . Тогда мы определяем новый вид энергии , связанный с внутренней структурой вещества , и снова “спасаем” закон сохранения энергии .

Возвращающие силы и потенциальная энергия . Количество энергии , запасенной в гравитационной системе , в пружине или в системе магнитов , зависит от степени деформации системы . Это искажение может заключаться в перемещении тяжелого тела на высоту h , в растяжении пружины на длину х , в сближении на расстояние х дух отталкивающихся магнитов . На графиках показана зависимость от искажения , h или х.

Потенциальная энергия системы является скалярной величиной, выражаемой в джоулях , которая сама по себе не дает никакой информации о ее будущем поведении . Взгляните на графики Wпот ( x ) для трех разных пружин и найдите на каждом точку , где Wпот = 1 Дж . Очевидно , первый график соответствует слабой пружине , которую сильно растянули. Второй относиться к сильной пружине , которую надо растянуть совсем немного для того , чтобы запасти 1 Дж . В третьем случае пружина сжата . Хотя значение потенциальной энергии одинаково во всех случаях , поведение пружин , если их освободить , будет совершенно различным . Первая пружина будет медленно тянуть обратно ( влево ) , вторая резко дернет влево , третья будет распрямляться вправо . Хотя одно только значение потенциальной энергии не позволяет предсказать такое различное поведение , это ,очевидно , можно сделать , зная форму всего графика Wпот ( x ). Именно наклон кривой Wпот ( x ) в каждой точке характеризует возвращающую силу в х – направлении , которая действует в системе в этой точке . Рассмотрим несколько примеров .

График Wпот( h ) для тела , поднятого над поверхностью Земли ( для малых высот ) , имеет постоянный наклон mgh )/Δh = mg . Тангенс угла наклона раве весу тела .Здесь , однако , имеется некоторая тонкость . Возвращающая сила тяготения направлена вниз и потому отрицательна . Тангенс угла наклона графика Wпот( h ) положителен . Если мы хотим получить возвращающую силу в системе , то следует взять отрицательный тангенс : Fвозвр= -ΔW(h)/Δh . Внешняя сила , которую следует приложить к системе для того , чтобы запасти энергию тяготения , направлена в противоположную сторону , то есть вверх , и положительна . То же самое справедливо и для энергии , запасенной в пружине . Возвращающая сила дается выражением


Fвозвр= - ΔW(x)/Δx = -Δ(ЅkxІ) /Δx = -kx.

Возвращающая сила подчиняется закону Гука ; она пропорциональна смещению и направлена в сторону , противоположную смещению. Заметьте, что это определение согласуется с тем , что можно было ожидать качественно в случаях трех пружин , которые мы рассмотрели . В первом случае тангенс угла наклона мал и положителен , поэтому возвращающая сила будет малой и отрицательной – направленной в сторону меньших значений х . Во втором случае тангенс угла наклона велик и положителен - возвращающая сила будет большой и отрицательной . В третьем случае тангенс угла наклона отрицателен , поэтому возвращающая сила будет положительной , заставляя пружину расширяться .

В случае магнитов , где

Wпот.магн( x ) = C / х ,

Fмагн= - Δ(C/x)/Δx = C/xІ.

Обратите внимание , что возвращающая сила положительна , магниты отталкивают друг друга в сторону больших значений х .

Снова обратите внимание на касательные , показанные на графике

Wпот.магн( x ) . При малых х наклон очень крутой и отрицательный , поэтому сила велика и положительна ( F = - ΔWпот.магн ( x ) / Δх ) . При больших х наклон незначительный и отрицательный . Следовательно , сила маленькая и положительная .

Пример, доказывающий закон сохранения энергии. Рассмотрим движение тела в замкнутой системе, в которой действуют только консервативные силы. Пусть , например , тело массой m свободно падает на Землю с высоты h ( сопротивление воздуха отсутствует ) . В точке 1 потенциальная энергия тела относительно поверхности Земли равна Wп1=mgh , а кинетическая энергия Wк1=0 , так что в точке 1 полная механическая энергия тела W1=Wп1+Wк1=mgh .

При падении потенциальная энергия тела уменьшается , так как уменьшается высота тела над Землей , а его кинетическая энергия увеличивается , так как увеличивается скорость тела . На участке 1-2 равном h , убыль потенциальной энергии ΔWп=mgh1, а прирост кинетической энергии ΔWк=Ѕ·mυ2І , где υ2– скорость тела в точке 2 . Так как υ2І=2gh1 , то принимает вид ΔWк=mgh1. Из формул следует , что прирост кинетической энергии тела равен убыли его потенциальной энергии . Следовательно , происходит переход потенциальной энергии тела в его кинетическую энергию , т.е. ΔWк = -Wп . В точке 2 потенциальная энергия падающего тела Wп2 =Wп1 – ΔWп =mgh – mgh1, а его кинетическая энергия Wк2 =ΔWк=mgh1.

Следовательно , полная механическая энергия тела в точке 2W2=Wк2 + Wп2 = mgh1 + mgh – mgh1 = mgh .

В точке 3 ( на поверхности Земли ) Wп3 =0 ( т.к. h=0 ) , а Wк3 =Ѕ·mυ3І , где υ3– скорость тела в момент падения на Землю . Так как υ3І=2gh , то Wк3 =mgh . Следовательно , в точке 3 полная энергия тела W3 =mgh , т.е. за все время падения W =Wк +Wп =const .

Эта формула выражает закон сохранения энергии в замкнутой системе , в которой действуют только консервативные силы :

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую

энергию и обратно.

Еще один пример из жизни. Сохранение энергии – вопрос сложный и во многом не до конца разгадан , поэтому приведу следующее простенькое сравнение .

Вообразите , что мать оставляет в комнате ребенка с 28 кубиками , которые нельзя сломать . Ребенок играет кубиками целый день , и мать , вернувшись , обнаруживает , что кубиков по-прежнему 28 – она следит за сохранением кубиков ! Так продолжается день за днем , но однажды , вернувшись , она находит всего 27 кубиков . Оказывается , один кубик валяется за окном –ребенок его выкинул . Рассматривая законы сохранения , прежде всего нужно убедится в том , что ваши предметы не вылетают за окно . Такая же неувязка получится , если в гости к ребенку придет другой мальчик со своими кубиками . Ясно , что все это нужно учитывать , рассуждая о законах сохранения . В один прекрасный день мать , пересчитывая , обнаруживает всего 25 кубиков и подозревает , что остальные 3 ребенок спрятал в коробку для игрушек . Тогда она говорит : “ Я открою коробку “ . “ Нет , - отвечает он , - не смей открывать мою коробку “ . Но мама очень сообразительна и рассуждает так : “ Я знаю , что пустая коробка весит 50 г , а каждый кубик весит 100 г , поэтому мне надо просто – напросто взвесить коробку “ . Затем , подсчитав число кубиков , она получит

Число видимых кубиков + ( Масса коробки – 50 г ) / 100 г

  • опять 28 . Какое-то время все идет гладко , но потом сумма опять не сходится . Тут она замечает , что в раковине изменился уровень грязной воды . Она знает , что если кубиков в воде нет , то глубина ее равна 15 см , а если положить туда один кубик , то уровень повысится на 0,5 см .

Число видимых кубиков + ( масса коробки – 50 г ) / 100 г + ( уровень воды – 15 см ) / 0,5 см

и снова получается 28 .

Мы установили , что для закона сохранения энергии у нас есть схема с целым набором правил . Согласно каждому из этих правил , мы можем вычислить значение для каждого из видов энергии . Если мы сложим все значения , соответствующие разным видам энергии , то сумма их всегда будет одинаковой .


Взаимосвязь потенциальной и кинетической энергий. Рассмотрим один примеров применения закона сохранения энергии . Мы знаем , что W=Wк + Wп. Рассмотрим так называемые “американские горы” в разрезе . Допустим , что тележка начинает свое движение с высоты h над уровнем Земли . По своему опыту мы знаем , что скорость тележки наибольшая в “долинах” и наименьшая на “горах” . Это объясняется взаимным превращением потенциальной и кинетической энергий . Поскольку потенциальная энергия в любой точке пропорциональна высоте этой точке над уровнем отсчета ( или Земли ) , разрез гор можно превратить прямо в диаграмму потенциальной энергии. Пользуясь этим графиком , мы можем узнать значение Wпотв любой точке пути тележки .

Положение S=S1=0 соответствует точке старта , где Wпот( S1 ) = mgh1 и Wкин( S1 ) = 0 . В результате полная энергия W в точке S=S1 равна W=Wпот( S1 ) + Wкин( S1 ) = mgh1 . Если пренебрегать потерями энергии на трение , то , согласно закону сохранения энергии , полная энергия в любой другой точке тоже должна быть равна mgh1. В точке S= S2, где тележка находится на высоте h2 , потенциальная энергия равна Wпот( S2 ) = mgh2 и кинетическая энергия должна быть равна разности между W и Wпот( S2 ) , т.е.

Wкин( S2 ) =W–Wпот( S2 )= mg( h1 – h2 ) .

Таким образом , можно построить график кинетической энергии , которая представляет собой расстояние от прямой , изображающей полную энергию до кривой потенциальной энергии .

Всеобщий характер закона сохранения энергии. Выходит , все рассматриваемые нами случаи имели одну весомую оговорку : не учитывалась сила трения . Но когда на тело действует сила трения ( сама по себе или вместе с другими силами ) , закон сохранения механической энергии нарушается : кинетическая энергия уменьшается , а потенциальная взамен не появляется . Полная механическая энергия уменьшается . Но при этом всегда растет внутренняя энергия . С развитием физики обнаруживались все новые виды внутренней энергии тел : была обнаружена световая энергия , энергия электромагнитных волн , химическая энергия , проявляющаяся при химических реакциях ; наконец , была открыта ядерная энергия . Оказалось , что если над телом произведена некоторая работа , то его суммарная энергия настолько же убывает . Для всех видов энергии оказалось , что возможен переход энергии из одного вида в другой , переход энергии от одного тела к другому , но что и при всех таких переходах общее количество энергии всех видов , включая и механическую и все виды внутренней энергии , остается все время строго постоянным . В этом заключается всеобщность закона сохранения энергии .

Хотя общее количество энергии остается постоянным , количество полезной для нас энергии может уменьшаться и в действительности постоянно уменьшается . Переход энергии в другую форму может означать переход ее в бесполезную для нас форму . В механике чаще всего это – нагревание окружающей среды , трущихся поверхностей и т.п. Такие потери не только невыгодны , но даже вредно отзываются на самих механизмах ; так , во избежание перегревания приходится специально охлаждать трущиеся части механизмов .

Наиболее важный физический принцип. Любой физический закон имеет ценность лишь постольку , поскольку он позволяет проникнуть в тайны природы . С этой точки зрения закон сохранения энергии , конечно , самый важный закон в науке . Вместе с законом сохранения импульса рассмотрение баланса энергии в радиоактивном -распаде привело к постулированию существования нейтрино – одной из наиболее интересных фундаментальных частиц . используя закон сохранения энергии , мы смогли глубоко проникнуть в сущность сложнейших процессов , протекающих в биологических системах .Несмотря на чрезвычайную трудность проведения точных физических измерений на живых организмах , при изучении процессов обмена веществ в малых организмах удалось подтвердить справедливость закона сохранения энергии с точностью 0,2 % .

Многие явления природы задают нам интересные загадки в связи с энергией . Не так давно были открыты объекты , названные квазарами ( quasar – сокращение от quasi star – “будто бы звезда” . ) Они находятся на громадных расстояниях от нас и излучают в виде света и радиоволн так много энергии , что возникает вопрос , откуда она берется . Если энергия сохраняется , то состояние квазара после того , как он излучил такое чудовищное количество энергии , должно отличаться от первоначального . Вопрос в том , является ли источником энергии гравитация - не произошел ли гравитационный коллапс квазара , переход в иное гравитационное состояние ? Или это мощное излучение вызвано ядерной энергией ? Никто не знает . Вы скажете : “А может быть , закон сохранения энергии несправедлив ?” Нет , когда явление исследовано так мало , как квазар ( квазары настолько далеки , что астрономам нелегко их увидеть ) , и как будто бы противоречит основным законам основным законам , обычно оказывается , что не закон ошибочен , а просто мы недостаточно знаем явление .

Другой интересный пример использования закона сохранения энергии- реакция распада нейтрона на протон , электрон и антинейтрино . Сначала думали , что нейтрон превращается в протон и электрон . Но когда измерили энергию всех частиц , оказалось , что энергия протона и электрона меньше энергии нейтрона . Возможны были два объяснения . Во–первых , мог быть неправильным закон сохранения энергии . Бор предположил , что закон сохранения выполняется только в среднем , статистически . Но теперь выяснилось , что правильно другое объяснение : энергии не совпадают потому , что при реакциях возникает еще какая –то частица – частица , которую мы называем теперь антинейтрино . Антинейтрино уносит с собой часть энергии . Вы скажете , что антинейтрино , мол , только для того и придумали , чтобы спасти закон сохранения энергии . Но оно спасает и многие другие законы , например закон сохранения количества движения , а совсем недавно мы получили прямые доказательства , что нейтрино действительно существует .

Этот пример очень показателен . Почему же мы можем распространять наши законы на области , подробно не изученные ? Почему мы так уверены , что какое-то новое явление подчиняется закону сохранения энергии , если проверяли закон только на известных явлениях ? Время от времени вы читаете в журналах , что физики убедились в ошибочности одного из своих любимых законов . Так , может быть , не нужно говорить , что закон выполняется там , куда вы еще не заглядывали , вы ничего не узнаете . Если вы принимаете только те законы , которые относятся уже к проделанным опытам , вы не сможете сделать никаких предсказаний . А ведь единственная польза от науки в том , что она позволяет заглядывать вперед , строить догадки . Поэтому мы вечно ходим , вытянув шею . А что касается энергии , она , вероятнее всего , сохраняется и в других местах .

Теория удара .


Поскольку моя работа имеет отношение к действию закона сохранения энергии при ударе , рассмотрим теорию удара .

Явление удара . Движение твердого тела , происходящее под действием обычных сил , характеризуется непрерывным изменением модулей и направлений скоростей его точек . Однако встречаются случаи , когда скорости точек тела , а следовательно , и количество движения твердого тела , за ничтожно малый промежуток времени получают конечные изменения .

Явление , при котором за ничтожно малый промежуток времени скорости точек тела изменяются на конечную величину , называется ударом .

Примерами этого явления могут служить : удар мяча о стену , удар кия и биллиардный шар , удар молота о болванку , лежащую на наковальне , бабы копра о сваю и ряд других случаев .

Конечное изменение количества движения твердого тела или материальной точки за ничтожно малый промежуток времени удара происходит потому , что модули сил , которые развиваются при ударе , весьма велики , вследствие чего импульсы этих сил за время удара являются конечными величинами . Такие силы называются мгновенными или ударными .

Действие ударной силы н материальную точку . Рассмотрим материальную точку М , движущуюся под действием приложенных к ней сил . Равнодействующую этих сил ( конечной величины ) обозначим Рк. Предположим , что в некоторый момент t1 на точку М , занимавшую положение В дополнительно начала действовать ударная сила Р , прекратившая свое действие в момент t2= t1 + τ , где τ - время удара .

Определим изменение количества движения материальной точки за промежуток времени τ. Обозначим S и S1 импульсы сил Р и Рк, действовавшие на точку за время τ .

По теореме изменения количества движения материальной точки

2 – mυ1 = S + Sк ( 1 )

Импульс Sк силы Рк за ничтожно малый промежуток времени τбудет величиной того же порядка малости, что и τ. Импульс же S ударной силы Р за это время является величиной конечной. Поэтому импульсом Sк ( по сравнению с импульсом S ) можно пренебречь . Тогда уравнение ( 1 ) примет вид

2 – mυ1 = S ( 2 )

или

υ2 – υ1 = S/m ( 3 )


Уравнение ( 3 ) показывает , что скорость υ2 отличается от скорости

υ1 на конечную величину S / m . Ввиду того , что продолжительность удара τ ничтожно мала , а скорость точки за время удара мала и им можно пренебречь .

В положении В точка получает конечное изменение скорости от υ1 до υ2 . Поэтому в положении В , где действовала ударная сила , происходит резкое изменение траектории точки АВD . После прекращения действия ударной силы точка движется снова под действием равнодействующей Рк ( на участке ВD ) .

Таким образом , можно сделать следующие выводы о действии ударной силы на материальную точку :

  1. действием не мгновенных сил за время удара можно пренебречь .

  2. перемещение материальной точки за время удара можно не учитывать .

  3. результат действия ударной силы на материальную точку выражается в конечном изменении за время удара вектора ее скорости , определяемом уравнением ( 3 ) .


Практическая часть.

Испытание прочности

древесины на удар .

При испытании материалов на удар используется закон сохранения механической энергии . Само испытание основано на том , что работа , нужная для разрушения материала , равна изменению потенциальной энергии падающего на образец тяжелого маятника . Испытательные устройства , которые служат для этого называют вертикальными маятниковыми копрами .

Для демонстрации испытания прочности образца при ударе собирают установку: в верхней части двух штативов закрепляют зажимы, в углублениях, на которых кладут металлическую трубку с отверстиями посередине. В них плотно вставляют металлический стержень для маятника. На нижний конец стержня насаживают диск массой 1,9 кг. На трубку надевают деревянную рамку так , чтобы она могла поворачиваться вокруг горизонтальной оси с некоторым трением .

Между штативами помещают испытуемый образец – деревянный брусок , вырезанный поперек волокон и сильно отклоняют маятник ( измерительной линейкой определяя высоту его поднятия ) и отпускают . Брусок ломается , а маятник после удара поднимается на некоторую высоту , поварачивая рамку . Заметив положение рамки можно определить высоту поднятия маятника после удара . Разность потенциальных энергий маятника до и после удара дает работу , которая затрачена на разрушение материала . Чтобы определить ударную вязкость надо эту работу разделить на площадь поперечного сечения испытуемого образца . При этом прочность на удар во многом зависит от температуры , влажности и некоторых других условий .

Анализ практических исследований .

Проведенные практические исследования , состоящие из 6 серий опытов ( причем каждая серия включала в себя по два опыта с одинаковыми начальными параметрами ( условиями ) : высота поднятия маятника до опыта , h ; температура испытуемого образца , площадь поперечного сечения ) , позволяют выявить ряд закономерностей , которые могут найти обширное применение в технике .

Зависимость между значением ударной и температурой можно вывести из следующих соображений :

δ1 = ( а10 - а0 ) / а10 = 3,1 %

δ2 =( а0 - а-10 ) / а0 = 6,3 % ( 1 )

δ3 = ( а-10 - а-20 ) / а-10 = 12,5 %

Ударная вязкость вычисляется по формуле :

а = А / S = mg( h1 – h2 ) / S = mgΔh / S ( 2 )

Из таблицы, которая приведена ниже видно , ударная вязкость зависит от температуры образца . Выведем зависимость между значением ударной вязкости и температурой :

1) Примем за точку отсчета t° = 10°C ( в принципе можно взять и другую температуру ) .

2) Из вышеприведенных вычислений , следует что разность между значениями ударной вязкости при двух разных температурах ( 10° и 0° ) составляет примерно 3 % .

3)Тогда выражение ( 2 ) можно представить в следующем виде :

аn ( t ) =( mgΔh / S ) · ( 1 ± b ) ( 3 ) ,

где mgΔh / S = а10 = const , обозначим ее буквой г .

bn – член геометрической прогрессии , выражающий сущность зависимости изменения значений аn ( t ) от температур ;

= k ·2n-1, где k – 0,03 ( см. пункт 2 ) при г = а10 ;

n – показатель степени , равный отношению | Δt | / 10 , где Δt = t – 10 ,

т.е.|Δt|/10 = 0,03 · 2(Δt/10-1)

знак “плюс” или “минус” ставятся в случаях соответственного повышения ( понижения ) температуры по сравнению с начальной ( 10єC ) .

исходя из этого выражения ( 3 ) примет вид :

а(Δtє) = г - г·0,03·2(Δt/10-1)= г - г·0,03/2·2Δt|/10= =г - 0,015· г · 2Δt|/10 ( 4 )

а(Δtє) = г – 0,015 г ·2Δt|/10 ( 4а ), при понижении температуры

а (Δtє) = г + 0,015 г ·2Δt|/10 ( 4б ), при повышении температуры

Определение погрешности вычислений.

аn = mgΔh / S = mg ( h1 - h2 ) / S

Δh1ґ = 0,01

Δh2ґ = 0,025 6

Δh3ґ = 0,01 Δh =Σ Δhi / 6 = 0,01

Δh4ґ = 0,01 | n=1

Δh5ґ = 0,005 |

Δh6ґ = 0,005

а = mg ( h1 – h2 ) ± mg Δhґср / S

а = а ± 291 Дж/мІ

Погрешность вычислений при 50є Δt -50є не превышает 5 % , следовательно вычисления можно считать достоверными .

Следует отметить , что функция аn ( Δtє ) является показательной , причем lim г ( 1 – 0,015·2 |Δt|/10 ) = 0

Δt→-50˚

Отсюда следует , что при понижении температуры в 5 раз по сравнению с первоначальной древесины имеет крайне низкую ударной вязкость . При Δt -50є зависимость аn( Δtє ) будет иметь несколько другой вид , чем в выражении ( 4 ) . Из – за широкого диапазона температур и громоздких и трудных вычислений мы не исследуем эту зависимость .

Свойства древесины . Механические свойства древесины не одинаковы в разных направлениях волокон и зависят от различных факторов ( влажности , температуры , объемного веса и др. ) . При испытании механических свойств древесины учитывают ее влажность и результаты испытаний пересчитываются на 15 % -ную влажность по формуле ( справедлива в пределах от 8 до 20 % влажности )

D15 = Dω (1 + a ( W – 15 ) ) ,

где D15 - величина показателя механических свойств древесины при влажности 15 % ; Dω - то же при влажности в момент испытания ; W – влажность образца в момент испытания в % ; a – поправочный коэффициент на влажность .

При сжатии вдоль волокон : сосны , кедра , лиственницы , бука , ясеня , ильмы и березы а = 0,05 ; ели , пихты сибирской , дуба и прочих лиственных пород а = 0,04 ; при растяжении вдоль волокон лиственных пород а = 0,015 ( для древисины хвойных пород а не учитывается ) ; при статическом изгибе ( поперечном – тангентальном ) всех пород а =0, 04 ; при скалывании а = 0,05.

С увеличением влажности от нуля до точки насыщения волокон показатели механических свойств древесины уменьшаются . При увеличении влажности на 1 % предел прочности при сжатии вдоль волокон уменьшается на 4 – 5 % в зависимости от породы . Влияние влажности на предел прочности при растяжении вдоль волокон и на модуль упругости очень мало , а на сопротивление ударному изгибу - вовсе не учитывается .

В пределах от точки насыщения волокон и выше изменение влажности не влияет на механические свойства древесины .

С возрастанием температуры прочные и упругие свойства древисины понижаются . Предел прочности при сжатии вдоль волокон при температуре +80єС составляет около 75 % , при растяжении вдоль волокон ≈ 80 % , скалывании вдоль волокон ( тангентальная плоскость ) ≈50 % и сопротивление ударному изгибу ≈ 90 % от величины этих свойств при нормальной температуре ( + 20єС ) .

С понижением температуры прочные характеристики древесины возрастают . При температуре - 60єС пределы прочности при скалывании , растяжении и сжатии вдоль волокон и сопротивление ударному изгибу составляют соответственно 115 ; 120 ; 145 и 200 % от величины этих свойств при температуре +20єС .

Практическое применение

результатов опыта.

Законы сохранения находят широкое применение в технике : машиностроение , судостроение , аппаратостроение . Применение в любой отрасли производства , где необходимо учитывать ряд механических свойств материала и динамику их изменения , при расчетах используется закон сохранения энергии .

Таким образом , решается немалая часть задач , связанных с проектированием высококачественного , эффективного , износостойкого и самое главное – ценного , но в то же время экономичного оборудования .

Так , например , при конструировании ряда ДВС для судов ( в основном это дизели ) учитывается вредное воздействие поршня на стенки цилиндровой втулки , связанное с ударными нагрузками . При расчете толщины этих стенок для обеспечения износостойкости решается ряд инженерных задач по определению ударной вязкости , исходя из закона сохранения энергии .

В качестве второго примера можно привести огромное значение ударной вязкости при расчете усталостного разрушения направляющих лопаток реактивной турбины в паротурбинных установках .

При ударе об полость лопатки массы перегретого пара происходит износ поверхности работающих лопаток . Для его уменьшения делается расчет на износоспособность , в ходе которого опять таки делается упор на определение ударной .

Заключение .

Целью данной работы являлось проверить и применить на практике закон сохранения энергии , попытаться вывести ряд зависимостей между параметрами окружающих условий и более детально рассмотреть одно из важных механических свойств материалов – ударную вязкость и найти закономерность ее изменения с изменением окружающих условий. Надеюсь , что эта цель достигнута .


п/п


Высота поднятия маятника до опыта , h ( м )

Высота поднятия маятника после опыта , h , ( м )

испытуемого образца , ( єС )

S поперечного сечения , ( мІ )

Ударная вязкость а ( Дж / мІ )

1

0,735


0,49

20

0,62*10

102665

2

0,735


0,5

20

0,62*10

100670

3

0,735


0,4

50

0,62*10

143344

4

0,735


0,42

50

0,62*10

139940

5

0,735


0,47

-20

0,62*10

77098

6

0,735


0,46

-20

0,62*10

80008

7

0,735


0,415

-10

0,62*10

87093,5

8

0,735


0,44

-10

0,62*10

88595

9

0,735


0,42

0

0,62*10

94601,6

10

0,735


0,425

0

0,62*10

93100

11

0,735


0,41

10

0,62*10

97605

12

0,735


0,415

10

0,62*10

96103