Использование цифровой лаборатории "Архимед" в школьном химическом эксперименте
Сегодня в условиях развития информационного общества одним из ключевых элементов, позволяющих максимально индивидуализировать учебный процесс, является информатизация обучения, основанная на применении информационно-коммуникационных технологий (ИКТ), на организации учебного процесса в специализированной открытой информационно-образовательной среде, в которой посредством ИКТ происходит обмен учебной информацией.
В мировой практике имеется много примеров успешного использования информационно-коммуникационных технологий в образовании. Новые условия развития образования, реализация федеральных и региональных целевых программ и проектов вызывают необходимость разработки новой среднесрочной программы информатизации системы образования.
Для реализации принятой Правительством РФ «Концепции модернизации российского образования» разрабатывается проект «Информатизация системы образования» (2004-2009 гг.) Федерального агентства по образованию РФ. Основная идея проекта «Информатизация системы образования» – это создание условий для системного внедрения и активного использования ИКТ в работе школы. Участвующие в проекте школы перейдут на новую ступень использования ИКТ в учебном процессе, начнут активно использовать современные цифровые образовательные ресурсы.
Анализ состояния дел в области информатизации, проведенный в ходе подготовки проекта, выявил острую нехватку специалистов, способных создавать практически эффективные цифровые образовательные ресурсы и грамотно использовать их на практике. В связи с вышеизложенным, актуальным представляется создание новых моделей подготовки будущих учителей, работающих с использованием создаваемых в проекте цифровых учебно-методических материалов.
Одним из примеров реализации идей проекта «Информатизация системы образования» в естественно-научном образовании является создание и установка в школах цифровых лабораторий, которые позволят перевести школьный практикум естествознания на качественно новый уровень; подготовить учащихся к самостоятельной творческой работе в любой области знаний; осуществить приоритет деятельностного подхода к процессу обучения; развить у учащихся широкий комплекс общих учебных и предметных умений; овладеть способами деятельности, формирующими познавательную, информационную, коммуникативную компетенции.
Цифровая лаборатория «Архимед» – это новое поколение естественно-научных лабораторий – оборудование для проведения широкого спектра исследований, демонстраций, лабораторных работ. Входящие в состав цифровой лаборатории «Архимед» цифровые образовательные ресурсы и цифровые лабораторные комплексы, направлены на выполнение следующих задач: комплексное использование материально-технических средств обучения на основе современных технико-педагогических принципов; переход от репродуктивных форм учебной деятельности к самостоятельным, поисково-исследовательским видам работы; перенос акцента на практико-ориентированный компонент учебной деятельности; формирование коммуникативной культуры учащихся; развитие умений работы с различными типами информации и ее источников.
Сегодня цифровые лаборатории «Архимед» используются в практике обучения по физике, химии, биологии, экологии и пр. во многих школах России; учителями создан и опробован целый ряд методик применения КПК на уроках. Институт новых технологий проводит конкурсы подобных методических разработок (2); материалы по применению цифровых лабораторий «Архимед» стали все чаще появляться в трудах образовательных конференций и конгрессов и в публикациях прессы.
Объект исследования: учебно–воспитательный процесс в средних общеобразовательных учреждениях.
Предмет исследования: методическая деятельность учителя химии по использованию современных средств обучения в химическом эксперименте.
Целью нашей работы было исследование возможностей цифровой лаборатории «Архимед» для применения в урочной и внеурочной деятельности по химии.
Цель, предмет и объект исследования предполагают решение следующих задач:
1. Обобщить и систематизировать материалы по основным направлениям развития информационных и коммуникационных технологий в современном естественно-научном образовании, в частности в обучении химии.
2. Освоить технику работы с использованием цифровой лаборатории «Архимед».
3. Провести методический анализ разработок опытов по химии создателей цифровой лаборатории «Архимед».
4. Разработать методики и теоретическое обоснование результатов экспериментов с использованием цифровой лаборатории «Архимед» в урочной и внеурочной деятельности (элективные курсы «Химия и медицина», «Химия и экология») по химии.
5. Апробировать самостоятельно разработанные, модифицированные и предложенные разработчиками цифровой лаборатории «Архимед» опыты в урочной и внеурочной деятельности по химии.
6. Провести анкетирование в группе учащихся, использовавших в своей работе цифровую лабораторию «Архимед», с целью исследования эффективности её применения для процесса обучения.
7. Составить пособие к практикуму для учащихся – слушателей элективных курсов «Химия и экология» и «Химия и медицина» в форме рабочей тетради.
Глава 1. Обзор литературы
1.1 Информатизация системы образования
Человечество стремительно вступает в принципиально новую для него информационную эпоху. Существенным образом меняются все слагаемые образа жизни людей.
Мир меняется стремительно, меняются и требования к системе образования. Она уже сегодня должна ориентироваться на те потребности общества, которые появятся через 10-15 лет. Необходима целостная стратегия совершенствования системы общего образования в условиях глобальных процессов информатизации всех сфер жизни общества.
Цель и принципы информатизации системы образования (18)
Стратегическая цель – подготовка детей и молодежи к полноценной жизни в информационном обществе за счет повышения качества образования посредством формирования единой информационно-образовательной среды и интенсивного внедрения информационно-коммуникационных технологий в образовательный процесс.
Концептуальными принципами информатизации образования являются:
· принцип приоритетности – информатизация образования должна стать приоритетной областью государственной политики в области информатизации, что будет выражаться в усиленном ресурсном обеспечении;
· принцип системности – процесс информатизации должен обеспечить изменение системных свойств системы;
· принцип направляемого развития – так как реальные процессы внедрения информационно-коммуникационных технологий в систему образования будут развиваться в силу внутренних и внешних факторов, то цель управления информатизацией образования – направлять, корректировать объективно протекающие процессы саморазвития;
· принцип учета ограниченности ресурсов – так как ресурсы образовательной системы ограничены, то управление информатизацией образования предполагает оптимальный выбор и комбинирование ресурсов;
· принцип культуросообразности – информатизация образования должна строиться на учете национально-культурных особенностей, уклада жизни, ценностных ориентаций и норм поведения населения.
Основная идея проекта «Информатизация системы образования» – это создание условий для системного внедрения и активного использования ИКТ в работе школы. Участвующие в проекте школы перейдут на новую ступень использования ИКТ в учебном процессе, начнут активно использовать современные цифровые образовательные ресурсы. В них создадутся условия для творчества учителей, активной самостоятельной работы учащихся, гибкую организацию процессов учения и обучения. Сложившаяся в нашей стране модель массовой школы ориентирована, прежде всего, на унификацию учебного процесса. Информационные технологии ХХ века, на которых она построена, требовали использовать закрытую учебную архитектуру (32).
Постановка новых образовательных задач, связанных с преодолением кризиса Тоффлера (31) требуют перехода к открытой учебной архитектуре (33). Это невозможно без смены технологического базиса общего образования. Проект информатизации системы образования будет создавать условия для соответствующей трансформации (34). В рамках проекта:
· разрабатываются качественно новые учебные и методические материалы (компонент 1);
· трансформируется существующая система переподготовки и текущей методической поддержки педагогов (компонент 2);
· создаются межшкольные методические центры (компонент 3), обеспечивающие постепенную трансформацию муниципальной методической службы и внедрение новых учебных материалов в практику работы школы.
Второй компонент проекта (подготовка педагогов) включает в себя:
· переподготовку работников управления образованием пилотных регионов (на региональном и муниципальном уровнях), которые разрабатывают и проводят в жизнь региональные и муниципальные планы преобразования работы школы,
· переподготовку членов базовых (проектных) школьных команд, которые разрабатывают и проводят в жизнь планы информатизации своей школы,
· переподготовку предметных команд педагогов, которые будут обучать школьников на основе нового поколения цифровых образовательных материалов для шести предметных областей,
· создание новых моделей подготовки будущих учителей, подготовку их к работе с использованием создаваемых в проекте цифровых учебно-методических материалов,
· разработка системы управления качеством подготовки, переподготовки и повышения квалификации педагогов в области информатизации образования, с использованием универсальной (единой) системы учебных планов и модульных курсов подготовки, которая обеспечивает фиксацию, сохранение и распространение полученных в ходе проекта результатов на всю систему образования.
Анализ состояния дел в области информатизации, проведенный в ходе подготовки проекта, выявил острую нехватку специалистов, способных создавать практически эффективные цифровые образовательные ресурсы и грамотно использовать их на практике. Для успеха программы информатизации школы необходимо существенное развитие отечественного потенциала в области разработки и эффективного использования цифровых учебных материалов нового поколения. С этой целью, в рамках второго компонента предусмотрены меры по дополнительной подготовке специалистов в области педагогического дизайна, подготовке и изданию необходимых учебных и информационных материалов, широкой подготовке и информированию педагогов в области педагогического дизайна.
На всей территории РФ будут доступны как учебные материалы нового поколения для работы школьников и подготовки педагогов, так консультации по использованию этих материалов. Будет сформирован корпус методистов, которые смогут оказывать необходимую поддержку педагогам и после завершения проекта. Базой для переподготовки и последующей методической поддержки учителей станут межшкольные методические центры (компонент 3). Особенность предлагаемых программ обучения состоит в том, что они основываются на представлениях компетентностного подхода. Обучение педагогов включает в себя не только передачу соответствующих знаний и умений в ходе серии последовательных учебных мастерских, но и практическое использование этих знаний и умений педагогами в реальном учебном процессе, их постоянную консультационную поддержку, формирование (в том числе, с использованием Интернета) сетевых групп методической поддержки учителей. В результате должно произойти не только повышение квалификации педагогов, но и появиться практические изменения практики учебной работы в школах и профессиональных училищах, распространиться опыт и материалы для осуществления аналогичной трансформации в школах других регионов страны (34).
Структура массовой переподготовки педагогов включает пять основных процессов:
· Формирование у педагогов интереса к использованию ИКТ в учебном процессе еще до включения учителя в подготовку. Эта подготовка – добровольное дело педагога, желающего принять участие в решение наиболее противоречивых и острых задач современного образования, получать большее удовлетворение от своей работы (34).
· Ознакомление учителей с соответствующими способами педагогической работы с использованием ИКТ и специально разработанных учебно-методических материалов. Эта работа проводится в рамках специально организуемых мастерских. Содержание занятий мастерской определяется в соответствии с целевой группой обучаемых. Основной упор делается на поддержку дальнейшей самостоятельной работы педагогов. Например, при ознакомлении с ИКТ демонстрируются не столько основные приемы работы, сколько использование документации, обучающих программ, мастеров и подсказок для самостоятельного освоения соответствующих программных и технических средств (34).
· Оперативная поддержка, создание «среды сотрудничества» для прошедших подготовку педагогов: образование малых сетевых (в том числе, с помощью Интернет) групп взаимопомощи, постоянная в течение учебного года поддержка работы таких групп методистом, который проводил подготовку учителей (34).
· Анализ результатов практической работы и рефлексия процессов саморазвития учителя. Работа проводится в рамках мастерских и способствует закреплению и развитию методов профессионального саморазвития педагогов. Она является обязательной составной частью каждой из мастерских, наряду со знакомством с опытом передовых школ и учителей, педагогическими и поддерживающими их информационными технологиями. В ходе этой работы также стимулируется и поддерживается «растущая снизу» ассоциация преподавателей, где каждый педагог чувствует поддержку коллег, стремится и имеет реальную возможность достичь высших уровней педагогического мастерства (34).
Организационно переподготовка учителей проводится в форме краткосрочных семинаров (мастерских), которые проводятся 2-3 раза в год, а также методически и консультационно поддержанной практической работы педагогов в классе между этими семинарами. Вводный семинар предваряется «вступительным тестом», который помогает познакомиться с курсантами, определить их учебные стили и специфические нужды, что следует учесть в процессе переподготовки (знакомство с педагогическими техниками, уровень владения компьютером, тип интеллекта и т.п.). (Интенсивный семинар ориентирован на 6-12 дней занятий и проводится до начала учебного года). Успешно завершив вводный семинар, преподаватель возвращается к практической работе в школе, получая необходимую методическую поддержку. За нее отвечает методист, участвовавший в проведении семинара. Там, где есть технические условия, эту работу можно организовать с использованием Интернет. Сетевые группы взаимопомощи должны облегчить применение полученных знаний, способствовать созданию среды для формирования профессионального сообщества (34).
Составной частью методической поддержки являются семинарские занятия, проводимые в две сессии: в середине учебного года и по его окончании. Первая часть основного семинара проходит во время зимних каникул, как интенсивный пятидневный цикл занятий. Содержание работы семинара включает в себя подробный анализ работы в классе в первом полугодии (рефлексия, разбор удачных случаев), рассмотрение особенностей проведения занятий во втором полугодии. На этом семинаре участники проходят также цикл различных обязательных занятий. Основной результат семинара – индивидуальный план работы в классе на второе полугодие. Вторая часть основного семинара проводится по окончании учебного года. Содержание занятий включает анализ работы во втором полугодии и планирование занятий на следующий учебный год. На этом семинаре участники проходят цикл различных обязательных занятий. Участники завершают семинар отчетом о результатах учебного года и планом работы на следующий учебный год. В итоге, все участники, которые прошли основной цикл подготовки, включающий в себя три семинара и один учебный год моделируемой практической работы в школе, получают соответствующие сертификаты. При желании учитель может (и должен) модифицировать имеющиеся в его распоряжении новые методы работы. Для тех педагогов, которые хотят совершенствоваться в этом направлении, предлагается следующая ступень переподготовки (34).
Мастерская учителей организуется по окончании второго учебного года. Программа мастерской включает в себя анализ работы в прошедшем учебном году (рефлексия, разбор удачных случаев модификации и проектирования модулей) и ряд обязательных курсов. Мастерская завершается подготовкой учителями индивидуальных образовательных проектов для реализации в предстоящем учебном году. Успешное завершение мастерской учителей служит основанием для соответствующей сертификации педагогов, прошедших продвинутый цикл подготовки, который состоит из основного цикла и мастерской учителей, предваряемой одним дополнительным учебным годом моделируемой практической работы в школе (34).
После трех лет практической работы учителя могут пройти специальную подготовку и стать методистами по использованию ИКТ в учебной работе. Программа семинара методистов (Методический семинар) предусматривает участие курсанта в качестве ассистента в работе семинара по подготовке учителей (помощь работающему методисту, рефлексия работы). После стажировки в качестве методиста в течение учебного года (проведение семинаров, поддержка участников по компьютерной сети) курсант, успешно завершивший семинар, получает сертификат учителя-методиста с правом участвовать в подготовке учителей (34).
Обязательной составной частью сетевой поддержки педагогов являются:
– ведение списка рассылки и ленты новостей сетевого объединения педагогов;
– обмен видеофрагментами своих достижений (уроки, ученические конференции и т.п.) между участвующими в работе педагогами;
– регулярная подготовка сетевых методических бюллетеней, а также периодический выпуск интегрированных «бумажных» изданий.
Постоянно действующая сетевая поддержка, как составная часть массовой подготовки педагогов, представляет собой элемент системы управления содержательными преобразованиями в работе школы (34).
Проблемы и противоречия информатизации системы общего образования
Оценка реализации Государственной программы развития образования, анализ образовательной ситуации показывают, что, несмотря на значительные результаты информатизации системы общего образования, имеются проблемы, требующие разрешения (18):
1. Отраслевой характер информатизации в России, рассогласованность действий по различным отраслям значительно усложняет и снижает эффективность принимаемых мер.
2. Отсутствие системности организации и координации процесса информатизации.
3. Процессы информатизации идут в большей степени стихийно, нет четкой координации и согласования управленческих действий на разных уровнях. Темпы и уровень информатизации зависят от компетентности руководителей образовательных учреждений и органов управления образованием.
4. Недостаточная разработанность нормативно-правового обеспечения процесса информатизации.
5. Отсутствие республиканского компонента в содержании школьного курса информатики, контроля за качеством образования учащихся по информатике.
6. Слабая развитость информационных каналов оперативного управления образованием; недостаточная оснащенность образовательных учреждений современными обучающими компьютерными программами.
7. Малоэффективное использование имеющейся компьютерной техники в образовательном процессе.
8. Недостаточная разработанность механизмов стимулирования труда учителей информатики и учителей, использующих ИКТ.
Наличие широкого спектра проблем указывает на сложившиеся в системе общего образования противоречия (18):
- между приоритетностью информатизации и обособленность и отраслевым характером информатизации образования;
- между многообразием существующих средств образовательных технологий, высоким уровнем обеспеченность компьютерной техникой и малоэффективным использованием имеющихся информационных ресурсов в образовательном процессе; дефицитом квалифицированных кадров в области ИКТ;
- между необходимостью широкого использования ИКТ, высоким уровнем потребности в дистанционном образовании и несформированностью информационной образовательной среды, которая позволила бы эту потребность реализовать;
- между широкой реализацией республиканских и муниципальных программ и проектов информатизации образования и неразработанностью механизмов управления комплексной информатизацией систем образования, критериев определения эффективности использования ИКТ, механизмов оценки результативности, эффективности и социального влияния программ информатизации.
Потенциально информатизация системы общего образования может обеспечить повышение уровня качества образования, эффективности и информационной привлекательности деятельности образовательных учреждений. Однако, такой прорыв предполагает наличие четкой стратегии информатизации образования, последовательных и скоординированных действий в этой сфере.
1.2 Информатизация химического образования
В последнее десятилетие отмечается активное внедрение компьютерных и телекоммуникационных технологий в учебно-воспитательный процесс школы. В системе государственного управления образованием этому вопросу уделяют самое пристальное внимание.
Каждый день информационное сообщество российских учителей пополняется новыми именами, в сети появляются новые сетевые ресурсы, в школы приходят новые программные педагогические средства. Современный учитель химии не может находиться в стороне от этих процессов. Неуклонно растёт интерес преподавателей к проблеме информатизации: они принимают самое активное участие в создании образовательных ресурсов, их отладке, тестировании, апробации и внедрении. Сейчас уже никто не сомневается в том, что использование программных педагогических средств в учебно-воспитательном процессе существенно расширяет возможности учителя (11).
Можно выделить три основных направления развития информационных и коммуникационных технологий в современном естественно-научном образовании, в частности в обучении химии (36):
· дистанционное и открытое образование;
· виртуальные лаборатории;
· библиотеки мультимедиа-объектов
· применение метода компьютерных проектов в обучении химии;
· использование цифровых лабораторий как современного информационного оборудования в проведении химического эксперимента, в частности использование цифровой лаборатории «Архимед» (20).
Дистанционное и открытое образование.
В основе концепции открытого образования лежит творческий характер обучения. Такая форма образовательного процесса включает ученика в развёрнутые системы информационных баз данных, снимает пространственно-временные ограничения в работе с различными источниками информации, что очень актуально в современном постиндустриальном информационном обществе (36).
Одним из наиболее динамично развивающихся направлений открытого образования является дистанционное образование (ДО), которое позволяет реализовать следующие принципы (36):
· доступность обучения, в частности преодоление физических ограничений человека, расширение аудитории обучающихся;
· личностная направленность обучения, создание комфортных условий для школьников и учителей, учёт индивидуальных психологических особенностей (восприятия, памяти, мышления), индивидуальный темп обучения;
· развитие информационной культуры, навыков работы с современными средствами информатизации и телекоммуникации;
· социализация обучения, учёт личностно-коммуникативных особенностей учащихся.
Безусловный плюс – несомненная важность для психологического развития ребёнка – его вовлечение в систематическую учебную деятельность под непосредственным руководством взрослого, процесс овладения культурой и социализация проходят при посредничестве учителя.
Вместе с тем нельзя упускать из виду и обратную сторону дистанционного обучения. К проблемам дидактического плана следует отнести адаптацию сетевых образовательных ресурсов к возможностям, условиям, уровню подготовки каждого школьника (15).
Сложность состоит в том, что затруднено общение: между субъектами образовательного процесса нет непосредственного живого контакта. Посредником выступает компьютер. Для дистанционного обучения очень важна оперативность связи со школьником. Поэтому к учителю в системе ДО – компьютеру – предъявляются серьёзные требования:
- отвечать очень быстро на все письма;
- поощрять оперативность своих слушателей;
- установить чёткий график общения в режиме on-line и неукоснительно соблюдать его;
- создать атмосферу психологического комфорта
В настоящее время в системе ДО можно выделить следующие основные формы:
- электронные сетевые учебники;
- обучающие и контролирующие задания;
- электронные практикумы;
- исследовательские проектные работы;
- информационные ресурсы (2);
- дистанционные олимпиады и конкурсы;
- форумы, конференции, общение on-line;
- повышение квалификации и обмен опытом.
Виртуальные лаборатории.
Информационные технологии, включающие в себя современные мультимедиасистемы, могут быть использованы для поддержки процесса активного обучения. Именно они в последнее время привлекают повышенное внимание. Примером таких обучающих систем являются виртуальные лаборатории, которые могут моделировать поведение объектов реального мира в компьютерной образовательной среде и помогают учащимся овладевать новыми знаниями и умениями при изучении научно – естественных дисциплин, таких, как химия, физика, биология. Особо следует отметить значение виртуальных экспериментов для химического образования (24).
Преимущества работы с виртуальными лабораториями (24):
· Подготовка учащихся к химическому практикуму в реальных условиях:
1) отработка основных навыков работы с оборудованием;
2) обучение выполнению требований техники безопасности в безопасных условиях виртуальной лаборатории;
3) развитие наблюдательности, умения выделять главное, определять цели и задачи работы, планировать ход эксперимента, делать выводы;
4) развитие навыков поиска оптимального решения, умения переносить реальную задачу в модельные условия и наоборот;
5) развитие навыков оформления своего труда.
· Проведение экспериментов, недоступных в школьной химической лаборатории.
· Дистанционный практикум и лабораторные работы, в том числе с детьми, имеющими ограниченные возможности, и взаимодействие с территориально удалёнными школьниками.
· Быстрота проведения работы, экономия реактивов.
· Усиление познавательного интереса.
Недостатки работы с виртуальными лабораториями (24):
При использовании виртуальных лабораторий школьник, в силу своей неопытности, не сможет отличить виртуальный мир от реального, то есть модельные объекты, созданные компьютером, полностью вытеснят объекты реально существующего окружающего мира.
Библиотеки мультимедиа-объектов
Современное обучение уже трудно представить без технологии мультимедиа (англ. multimedia– многокомпонентная среда), которая позволяет использовать текст, графику, аудио, видео и мультипликацию в режиме диалога и тем самым расширяет области применения компьютера в учебном процессе. Изобразительный ряд, включая образное мышление, помогает обучаемому целостно воспринимать предлагаемый материал. Появляется возможность совмещать теоретический и демонстрационный материалы. Для обучения химии с использованием подобных мультимедиа-объектов создано достаточно много разнообразных электронных изданий: «Уроки химии Кирилла и Мефодия 8-11 класс», «Библиотека электронных наглядных пособий «Химия» (БЭНП)», «Открытая химия 2.5», «1С: Репетитор. Химия», «1С: Образовательная коллекция. «Химия для всех XXI: Самоучитель решению химических задач», «1С: Образовательная коллекция. Общая и неорганическая химия. 10-11 класс», «1С: Образовательная коллекция. Органическая химия. 10-11 класс», «Химия-8 (4CD)» (30).
Применение метода компьютерных проектов в обучении химии.
Использование метода проектов подразумевает использование терминологии. Программа Intel «Обучение для будущего» определяет учебный проект как организационную форму работы, которая (в отличие от занятия или учебного мероприятия) ориентирована на изучение законченной учебной темы или учебного раздела и составляет часть стандартного учебного курса или нескольких курсов (16). В школе его можно рассматривать как совместную учебно-познавательную, исследовательскую, творческую или игровую деятельность учащихся-партнёров, имеющую общую цель, согласованные методы, способы деятельности, направленные на достижение общего результата по решению какой-либо проблемы, значимой для участников проекта (23).
Использование метода проектов в обучении химии позволяет не только и не столько учить, сколько учиться, направлять познавательную деятельность обучаемого (22).
Ведущая роль отводится развитию умений пользоваться знаниями. Знания должны быть востребованы в собственном социальном опыте, усилить практическую направленность обучения химии.
Практикуемая в школе проектная деятельность по химии заключается в создании компьютерных программ, эффективно используемых на уроках изучения нового материала (презентации, сайты для лекций), при отработке умений и навыков (обучающие программы, тестирование), во время проведения химического практикума, при контроле знаний, умений и навыков (22).
Проектную деятельность можно рассматривать и как особое направление внеклассной работы, тесно связанное с учебным процессом и способствующее развитию межпредметных связей (химия, информатика, биология, физика, экология).
В зависимости от доминирующего при выполнении проекта по химии метода, ученикам может быть предложено выполнение проектов трёх типов (27):
1) информационного, направленного на работу с информацией о каком-либо объекте, явлении, ознакомление с информацией, её анализ и обобщение. Работа ведётся с научной литературой и Интернетом.
2) исследовательского, который по структуре приближен к подлинному научному исследованию: доказательство актуальности темы, определение проблемы, предмета и объекта исследования, обозначение задачи, методов, источников информации, выдвижение гипотез, обобщение результатов, выводы, оформление результатов, обозначение новых проблем.
3) практико-ориентированного, в котором с самого начала четко обозначается результат деятельности, ориентированный на интересы какой-либо группы людей; выполнение таких проектов требует распределения ролей участников, плана действий, внешней экспертизы.
Включение в образовательный процесс метода проектов принципиально изменило подход к творчеству: важен не только конечный результат, но и поиск его, творческая активность, исследовательский опыт, сам процесс творчества (22).
Проектная деятельность открывает большие возможности для приобретения личного и профессионального опыта, позволяет вырабатывать у учеников стремление и умение самостоятельно добывать и умело использовать знания, отстаивать свою точку зрения, даёт возможность приобрести коммуникативные навыки и умения, что особенно важно для дальнейшего выбора профессии. (22).
Нынешнее применение компьютеров в школе использует чисто экстенсивный подход: традиционные учебные курсы просто перекладываются на экран монитора. Но только с опорой на персонифицированное обучение с чёткой индивидуализированной дидактической задачей адекватной личностной направленности учащихся и педагогической технологией, способной решить эту задачу, можно произвести качественный образовательный скачок (4). Программное обеспечение учебного назначения активно разрабатывается, но отношение к методике их создания и использования зачастую недопустимо небрежное (23). То есть сегодня одним из основных факторов, препятствующих проникновению информационных компьютерных технологий (ИКТ) в предметное обучение (в частности обучение химии), является проблема методики.
Внедрение информационных компьютерных технологий в учебный процесс подразумевает этапы (23):
1. Начальный этап: минимизация временных и моральных затрат учителя; использование ИКТ на факультативных занятиях с небольшой группой заинтересованных и относительно хорошо подготовленных учащихся.
2. Второй этап: учитель использует компьютер для сопровождения изложения нового материала (использование электронных библиотек).
3. Третий этап: выходы в компьютерный класс на занятия, тренинг навыков решения задач, контроль знаний, использование интерактивных тренажеров и задачников.
4. Четвертый этап: создание с помощью ИКТ продуктов (web-сайтов, мультимедийных презентаций и т.п.).
1.3 Цифровая лаборатория «Архимед» – новое поколение школьных естественно-научных лабораторий
Цифровые лаборатории «Архимед» – это новое поколение естественно-научных лабораторий – оборудование для проведения широкого спектра исследований, демонстраций, лабораторных работ (35).
По сравнению с традиционными лабораториями "Архимед" позволяет существенно сократить время на организацию и проведение работ, повышает точность и наглядность экспериментов, предоставляет практически неограниченные возможности по обработке и анализу полученных данных (17).
Использование цифровой лаборатории «Архимед» способствует освоению понятий и навыков в смежных образовательных областях (3, 5, 13, 14):
· современные информационные технологии
· современное оборудование исследовательской лаборатории
· математические функции и графики, математическая обработка экспериментальных данных, статистика, приближенные вычисления, интерполяция и аппроксимация
· методика проведения исследований, составление отчетов, презентация проведенной работы (40).
1.3.1 Цифровая лаборатория «Архимед» в преподавании химии
Освоение техники работы с использованием цифровой лаборатории «Архимед» позволяет осуществить дифференцированный подход и развить у учащихся интерес к самостоятельной исследовательской деятельности. Эксперименты, проводимые с помощью цифровой лаборатории «Архимед» очень наглядны и эффективны, это даёт возможность лучше понять и запомнить тему. С цифровыми лабораториями можно проводить работы, как входящие в школьную программу, так и совершенно новые исследования. Их применение значительно повышает наглядность, как в ходе самой работы, так и при обработке результатов (3).
Применение исследовательского подхода к обучению создаёт условия для приобретения учащимися навыков научного анализа явлений природы, осмыслению взаимодействия общества и природы, осознанию значимости своей практической помощи природе.
Освоив работу с цифровой лабораторией «Архимед» каждый учитель сможет разрабатывать свои интересные лабораторные опыты, которые сделают процесс обучения более интересным и запоминающимся (3).
Достоинства цифровых лабораторий (3).
1. Получение данных, недоступных в традиционных учебных экспериментах.
2. Возможность производить удобную обработку результатов эксперимента.
3. Автоматизация сбора и обработки данных эко
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Использование эвристической технологии в образовательном процессе начальной школы
Глава 1. Теоретические основы использования эвристической технологии в образовательном процессе1.1 Понятие "эвристическая технология"
- Использование электронных средств обучения на уроках технологии
Глава 1. Современные средства обучения, применяемые на уроках технологии1.1 Классификация средств обучения1.2 Использование электронны
- Исследование взаимосвязи рефлексии и педагогического мастерства преподавателей
Актуальность исследования. В современном российском обществе формируются критерии оценки эффективности педагогических технологий, р
- Исследование возможности наполнения темы "Элементы II группы периодической системы Д.И. Менделеева" прикладным и экологическим содержанием посредством проведения интегрированных уроков
В настоящее время все более осознается опасность, которая может привести человечество к гибели – это экологическая катастрофа. Сегодн
- Исследование особенностей мышления школьников подросткового и раннего юношеского возраста
Глава I. Основные положения в изучении мышления1.2 ИСТОРИЯ РАЗВИТИЯ ТЕОРИИ МЫШЛЕНИЯ1.3 ПСИХОЛОГИЯ МЫСЛИТЕЛЬНОГО ПРОЦЕССА И ЕГО ФАЗЫ 1.4 В
- Исследование педагогического общения преподавателя со студентами
В отечественной педагогике понимание важности процесса общения учителя и ученика, специфичности этого процесса, привело к введению по
- Исследование развития сюжетно-ролевых игр старших дошкольников
Игра как основной вид деятельности детей дошкольного возраста является ведущим средством их воспитания.Выдающийся педагог Н.К. Крупск