Использование Веб-служб для индивидуализированного обучения, основанного на Веб-технологиях
Возрастающая популярность Интернета и Всемирной паутины оказала влияние на обучение с помощью компьютера (computer assisted learning), которое в настоящее время превращается в обучение, основанное на Веб-технологиях, так как Веб имеет множество преимуществ, которые может предложить образованию. Действительно, обучение через Веб может производиться откуда угодно, в любое время, с любого компьютера и без необходимости присутствия человека - преподавателя (human tutor). Тем не менее, большинство обучающих приложений (educational applications), основанных на Веб-технологиях, по-прежнему достаточно статичные и представляют общий подход к обучению, который не принимает во внимание индивидуальные потребности каждого учащегося (student), использующего обучающие приложения (educational application). Данная общепринятая практика не позволяет воспользоваться в полной мере всеми возможностями компьютера, подключенного к Интернет, как средства обучения учащихся.
С другой стороны, существуют технологии образовательного программного обеспечения (educational software technologies), которые очень эффективны в индивидуализации обучения (personalising tutoring). Действительно, Интеллектуальные Обучающие Комплексы (ИОК) (Intelligent Tutoring Systems, ITSs) и Интеллектуальные Обучающие Среды (ИОС) (Intelligent Learning Environments,ILEs) – это образовательные технологии, нацеленные на выполнение индивидуализированного обучения, основанного на их компонентах моделирования учащихся (learner modelling components). Моделирование учащегося включает в себя построение качественного представления, которое учитывает поведение учащегося в зависимости от имеющихся предварительных знаний об изучаемой области и изучение студентами данной область (Sison & Simura, 1998). Такое представление, называемое моделью учащегося, может помочь Интеллектуальному Обучающему Комплексу (ИОК) (Intelligent Tutoring System, ITS), Интеллектуальной Обучающей Среде (ИОС) (Intelligent Learning Environment, ILE), или интеллектуальному учащемуся, обучающегося в сотрудничестве (intelligent collaborative learner) в адаптации к определенным аспектам студенческого поведения (McCalla, 1992).
Для индивидуализированного взаимодействия с пользователем комплекс должен иметь доступ к большому количеству разнообразной информации о нем/ней, начиная с относительно долгосрочных фактов, таких как области интересов и знаний, и заканчивая краткосрочными фактами, такими как задача, которую пользователь в настоящее время пытается решить. Принимая это во внимание, Рич (Rich) (1999) выявил отличительный признак между долгосрочными и краткосрочными моделями пользователя. Долгосрочная модель пользователя может состоять из информации о пользователе, которая была собрана во время предыдущих взаимодействий. Эта информация может включать в себя уровень знаний пользователя в данной области, его/ее частые ошибки и т.д. Краткосрочная модель пользователя состоит из убеждений пользователя (the user’s beliefs) в конкретный момент времени (at a very specific time) и является результатом умозаключений системы (output of the reasoning of the system). В идеальном случае обе модели должны иметься в ИОК или ИОС и обмениваться информацией между собой.
Традиционно Интеллектуальные Обучающие Комплексы (ИОК) (Intelligent Tutoring Systems, ITSs) функционировали на стороне клиента (компьютера пользователя) как самостоятельные приложения. Эти ИОК (ITSs) основывались на модели учащегося, хранившейся локально на ПК (персональном компьютере) пользователя. Т.к. каждый комплекс такого класса собирает все больше и больше информации о каждом учащемся, он может улучшить свои прогнозы и у учащихся вырабатывается доверие к нему. Т.к. все личные данные хранятся локально на компьютере пользователя, единственным способом для учащегося воспользоваться преимуществами полностью адаптивного и индивидуализированного обучения будет гарантирование того, что он(а) использует один и тот же ПК каждый раз когда он(а) взаимодействует с ИОК. Однако в реальных компьютерных лабораториях образовательных учреждений это достаточно затруднительно, поскольку пользователи обычно не имеют своего собственного ПК и используют тот, который доступен в данный момент. Более того, в реальном учебном процессе учащемуся вероятно необходимо будет использовать ИОК как в учебном заведении, так и дома. Однако это также будет проблематично, в случае если модель учащегося (student model) существует только на одном единственном ПК, который находится либо в образовательном учреждении, либо дома.
Принимая во внимание вышеперечисленное, слияние ИОК и ИОС с обучением, основанном на веб-технологиях, может породить системы обучения (tutoring systems), которые могут не зависеть от ПК, платформы и могут быть использованы студентами в любое время, с любого компьютера без потери важной информации, собранной системой о них в их долгосрочной пользовательской модели.
Как следствие неоспоримых достоинств того, что слияние ИОК и ИОС с обучением, основанном на Веб-технологиях, может предложить, в последнее время много исследовательской энергии было направлено в эту область (например Alpert и др., 1999; Warendorf & Tan, 1997; Okazaki и др., 1996; Brusilovsky и др., 1996; Ritter, 1997; Nakabayashi и др., 1997). Подобно этим комплексам мы разработали Web F-SMILE (Web File-Store Manipulation Intelligent Learning Environment - Интеллектуальная Веб Среда Обучающая Манипулированию Хранилищем Файлов), которая является индивидуализированной системой обучения (personalised learning system), функционирующей через Веб. В частности, Web F-SMILE – это ИОС для начинающих пользователей GUI (Графического Пользовательского Интерфейса), который манипулирует файлами, такого как Windows Explorer (Проводник Windows). Однако, наш подход относительно функционирования системы через Веб основан на Веб службах, новой многообещающей технологии. Если быть более конкретным, Веб службы – это автономные, модульные приложения (self-contained, modular applications), которые предоставляют набор выполняемых функций каждому, кто запрашивает их. Основной характерной чертой Веб служб является то, что они взаимодействуют с приложениями, которые их вызывают, используя стандарты Веб, такие как WSDL (Web Service Definition Language), SOAP (Simple Object Access Protocol) и UDDI (Universal Description, Discovery and Integration). То, что моделирование учащихся основывается на стандартах Веб, имеет преимущество, заключающееся в возможности динамической интеграции приложений, распределенных в сети Интернет, независимо от того, на каких платформах они размещены.
Сходные исследования
Некоторое количество архитектурных паттернов (architectural patterns) уже было применено для развертывания ИОК и ИОС в Веб. В этом разделе мы представляем и обсуждаем наиболее общие архитектуры, а также сравниваем их и сопоставляем с архитектурой, которая была применена нами и которая основана на Веб службах. Затем обсуждаются сходства и различия между Web F-SMILE и другими программами, предлагающими индивидуализированное обучение (personalised tutoring) и основанными на Веб технологиях.
Простое решение по развертыванию ИОК и ИОС в Веб было основано на Java и применено в ADIS (Warendorf & Tan, 1997). ИОК целиком расположена в Java апплете, который пользователь загружает при посещении определенного адреса URL. ИОК выполняется на стороне ПК учащегося, и модель учащегося (student model) постоянно хранится на стороне клиента. Так как вся информация об учащемся (learner) хранится локально на его ПК, ADIS по-прежнему страдает от недостатков автономных, зависимых от ПК ИОК относительно полноты и соответствия модели учащегося (learner model).
Совсем другой подход – это распределенная клиент-серверная архитектура, которая применена, например, Эллиотом (Elliot) (1997). В данном случае некоторые модули хранятся на стороне сервера, а некоторые на стороне клиента. Java апплет, который постоянно хранится на стороне клиента, содержит модели системы, которые отвечают за взаимодействие с пользователем. Передача информации между сервером и клиентом осуществляется с использованием сокет соединений (socket connection) или при помощи других сетевых механизмов. Основная проблема с сокетами состоит в том, что они не поддерживают типы данных и, следовательно, нуждаются в ручном разборе сообщений (manual message parsing). В противоположность им, Веб службы придерживаются протокола XML (eXtensible Markup Language = Расширяемый Язык Разметки) для обмена данными, поэтому здесь разрешено предварительное определение сложных типов данных. Другим недостатком распределенной клиент-серверной архитектуры является то, что разработчику необходимо создать свой собственный протокол передачи информации (communication protocol), и клиент может испытывать проблемы при получении данных с сервера. Например, если пользователь работает как дома, так и на работе, то его(ее) модель может не работать как предполагалось, потому что клиент на работе может находиться за брандмауэром (firewall), который не позволяет передачу данных серверу, моделирующему пользователя, по определенному порту. В противоположность, Веб службы используют протокол SOAP (Simple Object Access Protocol) для осуществления передачи информации. Такая сильная зависимость Веб служб от стандартов гарантирует базовую способность к взаимодействию, которая означает, что данные о модели учащегося (learner model) можно будет прочитать с любого компьютера. К тому же Веб службы используют протокол передачи гипертекста (Hypertext Transfer Protocol) и поэтому получают преимущество в способности проходить через большинство систем безопасности (брандмауэры, прокси-серверы и т.д.).
Другой подход, который до настоящего времени являлся преобладающей архитектурой приложений, приспособленных под Веб (Web-enabled), - это архитектура HTML-CGI. Данная архитектура выбрана несколькими ИОК, такими как WITS (Okazaki и др., 1996), ELM-ART (Brusilovsky и др., 1996), PAT Online (Ritter, 1997), CALAT (Nakabayashi и др., 1997) и AlgeBrain (Alpert и др., 1999). Во всех этих ИОК пользователь взаимодействует с системой посредством Веб обозревателя (браузера). Информация, предоставляемая пользователем, посылается на Веб сервер, который пересылает ее CGI (Common Gateway Interface) приложению. CGI программа содержит все функциональные возможности и модель учащегося (student model) постоянно хранится на сервере. Однако данная архитектурная модель имеет ряд ограничивающих особенностей (constraining features), таких как отсутствие непосредственной интерактивности. CGI скрипты не устанавливаются (stateless) при выполнении (resulting) громоздких (cumbersome), самостоятельных (standalone) запросов. Например, пользователь вынужден идентифицировать себя каждый раз, когда он(а) посылает запрос. XML, с другой стороны, поддерживает структурирование сложных данных (structuring complex data) в иерархии и таким образом облегчает быстрые транзакции (Papadakis & Chrissikopoulos, 2000). Более того, Веб службы, в противоположность HTML-CGI архитектуре, где комплекс не может использовать ресурсы клиента, намного более свободно связаны, чем большинство традиционных распределенных приложений (Kuno & Sahai, 2002).
В заключение, Веб службы придерживаются протокола WSDL (Web Services Description Language - Язык Описания Веб Служб) для предоставления метаданных, необходимых для запуска службы, и UDDI (Universal Description Discovery and Integration = Универсальные Обнаружение и Интеграция Описаний) для размещения служб на UDDI серверах. Последнее позволяет динамически интегрировать приложения, распределенные в сети, независимо от их базовых платформ (underlying platforms). В целом, как указывают Tsalgatidou & Pilioura (2002), парадигма Веб-служб побуждает разработчиков к созданию приложений с размещением и использованием уже существующих Веб служб, а не к созданию требуемых выполняемых функций с нуля, способствуя, таким образом, быстрой и эффективной разработке приложений и оперативной интеграции (just-in-time integration).
В большинстве обучающих систем, основанных на Веб технологиях, (web-based educational systems) (Okazaki и др., 1996, López и др., 1998, Brusilovsky и др., 1996, Ritter, 1997, Machado и др., 1999) модель учащегося (student model) хранится на стороне сервера, но основные решения по поводу обучения (instructional decisions) принимаются клиентским приложением.
В Web F-SMILE также использован данный подход. Однако, в отличие от всех систем, перечисленных выше, Web F-SMILE имеет значительное преимущество, заключающееся в том, что он может быть также использован на пользовательских ПК, не подключенных к сети Интернет. Это сделано для того, чтобы пользователи могли использовать обучающую среду (learning environment) даже если по какой-то причине не удается установить подключение к Интернету. Для обеспечения работы Web F-SMILE в обоих режимах, в Web F-SMILE используются две модели учащегося (learner models) для каждого учащегося; одна хранится локально на компьютере пользователя, а другая – централизованно на сервере. Подобный подход также используется в DCG (Vassileva, 1997), а именно: в DCG при загрузке когда пользователь загружает Java приложение, копия его/ее модели учащегося (student model) создается локально на пользовательском ПК. Вся новая информация, собираемая во время взаимодействия учащегося (student) с системой сохраняется в локальной пользовательской модели. Когда пользователь заканчивает работу с приложением, локальная копия загружается на сервер. Однако данный подход не принимает во внимание тот факт, что пользователь при завершении работы с приложением уже может быть не подключен к Интернету. Web F-SMILE решает данную проблему путем согласования взаимодействия пользовательских моделей на стороне клиента и на стороне сервера соответственно. Каждый раз, когда пользователь оказывается online, две модели эффективно взаимодействуют через Веб службу и обмениваются данными таким образом, чтобы обе модели содержали самые последние сведения об учащемся.
Работа комплекса
Web F-SMILE является Интеллектуальной Обучающей Средой (intelligent learning environment) с Графическим Интерфейсом Пользователя (GUI, Graphical User Interface) для начинающих пользователей, манипулирующих файлами, как в Проводнике Windows 98/NT (Windows 98/NT Explorer) (Microsoft Corporation, 1998). Главной отличительной чертой системы является то, что она может адаптировать свое взаимодействие к каждому конкретному учащемуся. Для этого Web F-SMILE назначает агентов (agents) для наблюдения за учащимся в то время как он(а) активно занимается своей обычной деятельностью и дает непосредственные, непринужденные и индивидуализированные советы и обучение (spontaneous and individualized advice and tutoring) в случае возникновения проблемы. Индивидуализированные советы и обучение основаны на модели учащегося (learner model). Комплекс может работать и как приложение, использующее Веб технологии (Web-based application), и как автономное приложение (standalone application), когда компьютер учащегося не подключен к Интернету. Когда система работает онлайн, сведения об учащемся сохраняются на Сервере Моделирования Учащихся (Learner Modelling Server) и отдаются в распоряжение любого клиента приложения, который вызывает его. Однако учащийся также может управлять файловым хранилищем, когда находится в оффлайн. По вышеуказанной причине комплекс хранит две копии моделей учащихся (learner models), одну на сервере, а другую на ПК пользователя, для того, чтобы комплекс мог работать, как онлайн, так и оффлайн. Таким образом, удобство и простота использования комплекса увеличиваются.
Web F-SMILE использует Веб службы для обеспечения взаимодействия агентов (agents) комплекса с Веб сервером. Веб службы, в широком смысле этого термина, являются службами, представленными через Веб. В последнее время, однако, этот термин относится к набору отдельных протоколов связанных с взаимодействием удаленных приложений. Если быть более конкретным, Веб службы являются отдельными (self-contained), модульными приложениями, которые предоставляют набор выполняемых функций любому, запрашивающему их.
Рис. 1: Начальное состояние файловой системы дискеты учащегося
Простой пример работы комплекса, полученный при реальном взаимодействии пользователя с Web F-SMILE, представлен в таблице 1. Начальное состояние файловой системы на дискете учащегося показано на рис.1. Конечная цель учащегося заключается в форматировании дискеты. Однако дискета содержит папку с некоторыми важными письмами. Поэтому учащемуся требуется переместить папку в безопасное место (жесткий диск его/ее компьютера).
вырезать(A:\importantLetters\) копировать(C:\My Documents\) Рассуждение Web F-SMILE: Подозрительное действие. Совет: вставить(C:\My Documents\) Дополнительные темы для изучения: Копирование Объектов, Перемещение Объектов. вставить(C:\My Documents\) форматировать(A:\) |
Таблица 1: Пример взаимодействия пользователя с Web F-SMILE
Для того чтобы достичь своей цели и переместить папку «importantLetters», пользователь дает команду «вырезать» (действие 1). Однако, вероятно учащийся не знает, как осуществить свой план, потому что вторым действием он(а) ошибочно использует команду «копировать» вместо команды «вставать». Web F-SMILE находит это действие подозрительным, потому что в случае выполнения, такое действие привело бы к удалению содержимого из буфера обмена до того, как оно было использовано где-либо. Поэтому комплекс пытается сгенерировать альтернативные действия, которые учащийся, возможно, намеревался выполнить взамен. Для того чтобы выбрать наиболее подходящий совет, комплекс использует сведения об учащемся, которые доступны из модели учащегося (learner model). Web F-SMILE полагает, что альтернативное действие, которое наиболее вероятно намеревался выполнить пользователь – это «вставить(C:\My Documents\)», поскольку оно эффективно использует содержимое буфера обмена. Более того, команды «копировать» и «вставить» полагаются достаточно похожими, поскольку обе они связаны с буфером обмена. Поэтому пользователь мог перепутать их.
Более того, комплекс также выдает дополнительные темы для изучения (produces additional tutoring) в области копирования и перемещения объектов, которые он считает существенными для выполнения пользователем его/ее планов и достижения целей. Сведения из модели учащегося (learner model) показывают, что отдельный пользователь не имеет достаточного опыта в копировании и перемещении объектов и что в прошлом он(а) неоднократно делал ошибки вследствие недостаточной осведомленности по данной теме. Несомненно, учащийся признает совет комплекса очень полезным и поэтому воспользуется предложенным ему советом в действии 3. Затем в действии 4 учащийся отформатирует дискету, что и было его конечной целью. В случае если бы учащийся использовал стандартную программу для манипулирования файлами, его/ее ошибка в команде 2 могла бы быть не распознана и тогда учащийся отформатировал бы дискету и полезные данные были бы утеряны.
Архитектура мульти-агента
Web F-SMILE основана на архитектуре мульти-агента (multi-agent). Комплекс мульти-агента состоит из группы агентов (agents), которые являются автономными или полуавтономными и взаимодействуют или работают вместе для того, чтобы выполнить некоторые задания или достичь каких-то целей (Lesser, 1995). Разрабатывая отдельных агентов (agents) внутри комплекса мульти-агента, как преимущество получаем независимость от разработки других агентов (agents). Последнее значительно способствует разбиению сложного на более простые части (breakdown of complexity) (El-Beltagy и др., 1999).
Архитектура Web F-SMILE состоит из пяти агентов, а именно: Агент Моделирования Учащегося в Краткосрочном Периоде (МУКП) (Short Term Learner Modelling (STLM) Agent), Агент Моделирования в Долгосрочном Периоде (МУДП) (Long Term Learner Modelling (LTLM) Agent), Консультирующий Агент (Advising Agent), Обучающий Агент (Tutoring Agent) и Управляющий Речью Агент (Speech-driven Agent). Архитектура Web F-SMILE представлена на рис. 2, где проиллюстрированы все агенты (agents) и компонент представления области знаний (domain representation). Агенты совместно работают для того, чтобы наблюдать за учащимся и предоставлять ему индивидуализированные советы и обучение в случае, если это считается необходимым. Советы предоставляются учащимся, которые сделали ошибку, в соответствии с их предполагаемыми намерениями. Все эти агенты (agents) работают локально на компьютере учащегося и только Агент МУДП несет ответственность за взаимодействие с Веб сервером для моделирования учащегося.
Каждый раз, когда учащийся дает команду, Агент МУДП, который работает на стороне клиента, размышляет о команде в соответствии с его предположениями по поводу целей учащегося. Агент Моделирования Учащегося в Краткосрочном Периоде (МУКП) фиксирует познавательное состояние (cognitive state), также как и характеристики учащегося и устанавливает возможные неправильные представления. В случае если Агент МУКП предполагает, что учащийся попал в проблематичную ситуацию, он выполняет обнаружение ошибки. С этой целью он использует анализирующий инструмент (analysis engine) для того, чтобы получить новые «факты» об учащемся и ответить на запросы других агентов. Анализирующий инструмент основан на механизме распознавания с ограниченными целями (limited goal recognition mechanism) и теории правдоподобных человеческих рассуждений (Human Plausible Reasoning theory, HPR theory) (Collins & Michalski, 1989). Теория правдоподобных человеческих рассуждений – это независимая от области знаний теория, первоначально основанная на совокупности ответов людей на повседневные вопросы. Исходя из заданного человеку вопроса, теория старается смоделировать рассуждения, которые данный человек использует с целью найти правдоподобный ответ, полагая что он(а) не имеет готового ответа. До Web F-SMILE, HPR также успешно использовалась для моделирования пользовательских рассуждений в справочной системе (help system) для графического пользовательского интерфейса (Virvou & Kabassi, 2002) и в справочной системе для интерфейса командного языка (command language interface) (Virvou & Du Boulay, 1999).
Агент МУКП применяет принципы HPR при поиске альтернативных действий, схожих с тем, которое дал учащийся и которое пользователь намеревался дать вместо данного им сомнительного действия. Как только альтернативные действия сгенерированы, они посылаются Консультирующему Агенту (Advising Agent), который несет ответственность за выбор альтернативного действия, которое учащийся вероятнее всего намеревался сделать. Рассуждения Консультирующего Агента (Advising Agent) были оценены (Virvou & Kabassi, 2001) и результаты выражают веское доказательство того, что отдельный агент действительно может воспроизвести рассуждения человека-преподавателя (human tutor), который наблюдает за пользователем через плечо, пока тот взаимодействует с комплексом.
Более того, если Агент МУКП полагает, что неправильное понимание учащегося сложилось из-за недостатка знаний последнего, он информирует Обучающего Агента (Tutoring Agent) об этом. Обучающий Агент (Tutoring Agent) отвечает за формирование адаптивного представления урока, который должен усвоить учащийся. Консультирующий и Обучающий Агенты (Advising and the Tutoring Agent) запрашивают сведения об учащемся у Агента МУКП. Это сделано для того, чтобы они могли приспособить созданный совет и/или урок к потребностям и интересам каждого отдельного учащегося. Однако Консультирующему и Обучающему Агентам (Advising and the Tutoring Agent) нет необходимости соединяться с сервером напрямую, поскольку их механизмы рассуждений находятся на стороне клиента.
Обучающий Агент использует адаптивные гипермедиа методы, чтобы защитить учащихся от избытка информации и помочь им в понимании новых элементов получаемых знаний. В частности, эти методы используют информацию об отдельном учащемся (из модели учащегося) для адаптации уроков, представляемых этому учащемуся. Существует два основных гипермедиа метода, а именно: (1) адаптивное представление, в котором вариант адаптации (case adaptation) выполняется на уровне содержания и (2) адаптивная навигационная поддержка, которая выполняется на уровне ссылок (Brusilovsky, 1996). Обе эти технологии были оценены и результаты выражают веское доказательство того, что их использование в Адаптивной Гипермедиа Системе может улучшить взаимодействие человек-компьютер. В Web F-SMILE методы адаптивного представления используются, чтобы представить примеры использования неизвестной команды в контексте собственного файлового хранилища (file-store) учащегося. Поэтому Обучающий Агент (Tutoring Agent) генерирует примеры динамически, для того чтобы он мог использовать имена существующих файлов или папок конкретного учащегося. Более того, Обучающий Агент, использует методы комментирования адаптивными ссылками (adaptive link annotation techniques) для представления учащемуся других частей материала, который считается интересным учащемуся в данном конкретном случае.
И Консультирующий Агент (Advising Agent) и Обучающий Агент (Tutoring Agent) направляет результаты своей работы Управляющему речью агенту (Speech-driven Agent), который также расположен на стороне клиента. Управляющий речью Агент (Speech-driven Agent) отвечает за представление информации в единой и легкой доступной форме. Для того чтобы сделать взаимодействие более естественным и приятным, для представления совета учащемуся (system’s advice to the learner) используется анимированный Управляющий речью Агент (Speech-driven Agent) Такие персонажи (characters) выполняют развлекающую роль и несут эмоциональное значение, что может помочь снизить первоначальный барьер для начинающих изучать компьютерные приложения. К тому же, такие персонажи повышают эффективность комплекса, увлекая и мотивируя учащихся (Johnson и др., 2000). Управляющий речью Агент (Speech-driven Agent) отвечает за коммуникацию с учащимся в целом. Последнее обычно включает в себя сбор запросов учащегося и представление совета в случае, если выявлено, что учащийся попал в проблематичную ситуацию. Однако данный отдельно взятый агент (the particular agent) не содержит каких-либо дальнейших механизмов рассуждений.
Рис 2: Архитектура Web F-SMILE
Каждый раз, когда Агент МУКП получает новые сведения об учащемся, взаимодействующем с комплексом, он посылает их Агенту МУДП. В целом, Агент МУДП, сохраняет профили учащихся (learner profiles) и управляет ими, а также предоставляет релевантные сведения Агента МУКП, когда это считается необходимым. Более того, Агент МУДП отвечает за взаимодействие с WS-LM сервером (Web Service Learner Modelling Server - Сервер моделирования веб-сервиса обучаемого), для того чтобы сохранять и обновлять сведения, хранимые в моделях учащихся, как на стороне клиента, так и на стороне Web Service Server (Сервера Веб Служб).
Взаимодействие Клиентской и Серверной Моделей Учащегося
Web F-SMILE хранит две отдельные модели учащегося для каждого из них, одну локально на каждом компьютере и одну на сервере. Каждый раз, когда пользователь использует обучающую среду, комплекс проверяет, подключен ли пользовательский компьютер к Интернет или нет. В случае если компьютер находится в оффлайн, Web F-SMILE работает как автономное приложение (standalone application) с локальной пользовательской моделью. Агент МУДП отвечает за поиск модели учащегося для пользовательского взаимодействия с комплексом. В случае если Агент МУДП находит модель учащегося, взаимодействие начинается нормально и локальная модель учащегося обновляется с каждой новой командой учащегося. Однако если на данном ПК отсутствуют сведения об учащемся, учащемуся предлагается заполнить анкету, указав свои уровень опыта, опыт работы с операционными системами и другими программами для манипулирования файлами. Данные сведения используются Агентом МУДП для того, чтобы инициализировать модель учащегося, используя стереотипы.
В случае если ПК учащегося находится онлайн, Агент МУДП взаимодействует с Web Service Learner Modelling (WS-LM) Server для того, чтобы найти соответствующую модель учащегося на сервере. Если модель учащегося не существует на WS-LM, то Агент МУДП отвечает за выявление того, взаимодействовал ли учащийся с комплексом, находящимся оффлайн, используя данный конкретный компьютер. В случае если Агент МУДП не обнаруживает какой-либо информации о данном конкретном учащемся, он инициализирует модель учащегося локально. В любом случае, Агент МУДП направляет сведения об учащемся Веб-службе, которая создает новую модель учащегося, основанную на сведениях, которые были доступны из модели учащегося, проинициализированной локально.
Если учащийся, взаимодействующий с приложением, находится онлайн и на сервере существует модель учащегося, Агент МУДП отвечает за выявление того, существует ли локальная модель учащегося или нет. Если сведения об учащемся отсутствуют на локальном компьютере, Агент МУДП отвечает за создание копии модели учащегося с Сервера на жесткий диск ПК учащегося. В противном случае Агент МУДП выполняет задачу обновления обеих моделей самыми последними сведениями. Данный подход схож с принятыми в ИОК, которые работают как онлайн, так и оффлайн, например DCG (Vassileva, 1997). Однако, в DCG существует проблема, если у пользователя разрывается соединение с Интернетом, то с этого момента самая последняя работа студента и его обновления модели не сохраняются. В Web F-SMILE данная информация сохраняется в локальной модели учащегося до того момента, пока пользователь не будет использовать приложение онлайн, в этом случае хранимая централизованно модель учащегося обновляется.
Для того чтобы обновить модель учащегося верными данными, комплексу необходимо знать, какая информация еще не была включена в модель учащегося на сервере, а какая – в локальную модель учащегося. Это не так просто сделать, если модель учащегося хранит итоговые сведения о пользователе, например, число ошибок, сделанных по невнимательности. Поэтому Web F-SMILE регистрирует каждое взаимодействие учащегося отдельно, используя временные метки, таким образом, каждая запись в пользовательской модели имеет дату и время взаимодействия. Таким образом, каждое взаимодействие отличается от всех остальных, а Агент МУДП и Веб служба могут легко определить, какие из взаимодействий из локальной пользовательской модели не были еще включены в модель учащегося, хранящуюся на Сервере и наоборот. Более того, каждая запись в модели учащегося содержит флаг, показывающий, было ли данное взаимодействие отправлено на Сервер или нет.
Как только обновление модели учащегося завершено, взаимодействие с комплексом становится нормальным. Данный процесс повторяется, когда учащийся заканчивает работу с комплексом (в случае, если учащийся все еще находится онлайн), так что информация на Сервере обновляется при ее получении.
Моделирование учащихся на стороне клиента
Каждый раз, когда учащийся взаимодействует с Web F-SMILE, Агент МУКП собирает новые сведения о пользователе и обновляет модель учащегося, которая хранится на локальном компьютере учащегося. В случае если Агент МУКП не может найти модель учащегося для конкретного учащегося, он пытается проинициализировать модель учащегося, используя стереотипы. Пользовательские стереотипы применяются для того, чтобы предоставить начальные предположения о пользователях до тех пор, пока комплекс не получит достаточно сведений о каждом индивидуальном пользователе. Действительно, как показал Rich (1989; 1999), стереотип представляет информацию, которая позволяет комплексу делать большое количество правдоподобных предположений на основе значительно меньшего количества наблюдений; эти предположения, однако, должны трактоваться как начальные, которые могут быть отвергнуты отдельными наблюдениями.
В Web F-SMILE пользователей причисляют к одному из трех основных классов в соответствии с их уровнем знаний, а именно: начинающие, средние и опытные. Каждый из этих классов представляет возрастающий уровень мастерства в использовании отдельной программы для манипулирования хранилищем файлов. Такая классификация считается важной, потому что она позволяет комплексу получить первое представление об обычных ошибках и неправильных представлениях пользователя, принадлежащего к какой-либо группе. Например, начинающие пользователи обычно склонны к ошибкам из-за неправильного выбора команд или неправильного выполнения команды, тогда как опытные пользователи обычно делают ошибки из-за невнимательности. Поэтому другой классификацией, которая считалась важной, было деление пользователей на две группы: внимательные и невнимательные.
Стереотипы могут служить как инструмент для моделирования убеждений и предпочтений, которые может иметь пользователь комплекса. Основная причина применения стереотипов заключается в том, что они предоставляют набор начальных предположений, которые могут оказаться очень полезными во время получения гипотез о пользователе. Получение начальных предположений может оказаться очень эффективным при моделировании большого набора пользователей. Однако данный подход также имеет много недостатков. Например, несмотря на схожее поведение, которое могут иметь пользователи одной группы, каждый из них является индивидуумом, поэтому отличается от всех остальных по многим параметрам. Поэтому стереотипы должны быть использованы только при инициализации пользовательской модели, до тех пор, пока не появится больше индивидуальных сведений. Таким образом, Web F-SMILE хранит библиотеку моделей для каждой группы пользователей, и при каждом взаимодействии нового пользователя с системой Агент МУДП в Web F-SMILE должен определить класс, к которому принадлежит данный пользователь.
Все начальные предположения в стереотипах, используемых в Web F-SMILE, предоставляют сведения об ошибках, которые пользователи данной категории обычно делают. Сведения о каждой ошибке выражаются с использованием параметров достоверных событий теории HPR (теории правдоподобных человеческих рассуждений - Human Plausible Reasoning theory). Таким образом, мы использовали частотнгость, чтобы показать насколько часто пользователи, принадлежащие определенной группе, совершают отдельную ошибку. Другой частью информации, которая может быть получена из стереотипа, являются наиболее частые виды ошибок, совершаемых пользователями, принадлежащими данному стереотипу. Последнее выражается как число, представляющее преобладание определенной ошибки среди набора из всех ошибок пользователей, принадлежащих данному стереотипу. И, наконец, типичность показывает, насколько типична команда во множестве всех команд, данных пользователем.
Для того чтобы определить, к какому стереотипу принадлежит пользователь, ему предлагается ответить на несколько вопросов о его/ее уровне опыта в Графических Интерфейсах Пользователя (GUIs), его/ее опыте в операционных системах и других программах для манипулирования файлами и т.д. Данная информация далее обрабатывается Агентом МУКП для того, чтобы активизировать соответствующий стереотип.
После того, как стереотип был активизирован, комплекс делает несколько начальных предположений о возможных ошибках пользователя и может предоставить некоторое подобие совета. В самом начале, только стереотип предоставляет сведения. Однако комплекс также постоянно собирает сведения об образе действия и ошибках отдельного пользователя, а также передает данные индивидуальной модели учащегося. По мере того, как комплекс собирает все больше и больше данных об учащемся, сведения получаются частично из стереотипа, а частично из индивидуальной модели учащегося. Процент сведений, получаемых из стереотипа, уменьшается с возрастанием процента данных, собранных индивидуальной моделью учащегося.
В частности, для каждого нового взаимодействия Агент МУКП создает новую запись в модели учащегося с использованием временной метки, таким образом, каждая запись привязана к дате и времени взаимодействия. Таким образом, каждое взаимодействие отличается от всех остальных, а Агент МУДП и Веб служба могут легко определить, какие из взаимодействий из локальной пользовательской модели не были еще включены в модель учащегося, хранящуюся на Сервере и наоборот. Более того, каждая запись в модели учащегося содержит флаг, показывающий, было ли данное взаимодействие отправлено на Сервер или нет. Как только учащийся завершает свое взаимодействие с комплексом, Агент МУКП отвечает за взаимодействие с Веб службой для того, чтобы обновить долговременную модель данного конкретного учащегося, которая хранится на Сервере.
Моделирование учащихся на стороне Сервера
Связь между Клиентом и WS-LM осуществляется по протоколам Веб служб. Рис.2 резюмирует деятельность Веб службы и взаимодействие с агентами клиентов. Агент МУДП совершает определенный SOAP вызов (по HTTP), который содержит запрос, касающийся отдельной модели учащегося, к WS-LM. Для того, чтобы удостовериться в подлинности пользователя, данный вызов содержит имя пользователя и пароль, полученные пользователем во время его/ее взаимодействия с клиентским приложением. Каждый такой вызов извлекается и обрабатывается Коммуникационным модулем. В целом Коммуникационный модуль обрабатывает все сообщения Веб службы, а и
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Адаптация на основе оверлейной модели умений
Ildar Galeev, Larissa Tararina, Oleg KolosovKazan State Technological University,RussiaВ работе излагаются вопросы построения адаптивных частично интегрированных обучающих с
- Модель диалога человека-преподавателя контролирует деятельность в AutoTutor
За последнее десятилетие появилось несколько исследований, в которых была сделана попытка раскрыть механизм преподавания, отвечающий
- Параметризуемые Web-тесты, как средство обучения
Сергей Сосновский, Елена Щербинина, Петр БрусиловскийШкола ИнформатикиУниверситет ПиттсбургаПараметризуемые Web-тесты являются одним
- Профессиональное и высшее образование в Австралии
Курсовая работа выполнил: студент И-IV-8 Кухарь А.А.Самарская государственная сельскохозяйственная академияКафедра педагогики и психоло
- Разработка виртуальной химической лаборатории для школьного образования
Современный рынок электронных образовательных ресурсов развивается очень быстро. Учителю предлагается большой выбор педагогических
- Зачем они воруют?
Каждый ребенок хотя бы раз в жизни что-нибудь крадет. Возможно, существуют исключения, но я ни разу не слышала опровержения, высказывая
- Взрослая болезнь кривизны
Н. ИващенкоВопрос мой прост и краток –Промолвил носорог, – Что больше – сорок пятокИли пяток сорок?Увы, никто на это ответа дать не мо