Информационные параметры сигналов
В.М. Гончаров
Изучение развития колебательных процессов в испытуемых изделиях, путем проведения исследований одиночных импульсных сигналов излучаемых данным изделием, требует знания их параметров. Эти параметры должны позволять воссоздавать наиболее полную картину сигнала в частотной и временной области. Основными такими параметрами сигнала являются: энергия сигнала, пиковая мощность, длительность сигнала, несущая частота, количество посылок в сигнале.
Необходимость их измерения заключается в следующем:
Энергия импульса позволяет определить критерии стойкости измерительной аппаратуры и выяснить энергетические возможности разрабатываемых источников.
Пиковая мощность сигнала позволяет определить процессы развития колебаний и характеризует его способности.
Измерение длительности радиоимпульса позволяет выяснить механизм происходящих процессов.
Количество импульсов позволяет уточнить динамику процессов в источнике, сразу определяя параметры радиотехнических процессов, одновременно характеризуя поведение механических процессов.
Комплексный анализ этих данных позволяет практически выяснить сущность протекающих в одноразовых источниках процессов, уточнить параметры физической модели, и своевременно внести коррективы в разрабатываемые источники.
Для измерения параметров импульсного электромагнитного излучения, группой разработчиков института Радиофизики и электроники НАН Украины, разработан базовый блок спектрометра. Он позволяет измерять энергию одиночного электромагнитного импульса W, максимальное значение пиковой мощности сигнала Р, длительность входного сигнала T, и количество импульсов в сигнале N.
Принцип работы спектрометра ИПИЭИ-1
Структурная схема прибора показана на рис.1. Она состоит из следующих узлов. Входного фильтра, детектора, каналов измерения - энергии импульса, пиковой мощности и длительности импульса. Для управления узлами спектрометра, обработки результатов измерений и вывода данных на индикатор используется контролер. Прибор работает следующим образом. Сигнал с антенны поступает на входной фильтр, и далее на детектор. С выхода детектора огибающая исследуемого сигнала поступает на входной усилитель, обеспечивающий необходимое усиление в полосе частот согласованных с параметрами обрабатываемых сигналов. Выходной сигнал усилителя поступает на три канала обработки -канал измерения энергии импульса, канал измерения пиковой мощности и канал измерения длительности. Принцип работы этих каналов измерения энергии и пиковой мощности основан на преобразовании измеряемого параметра в квазипостоянное напряжение. Для этого в канале измерения энергии входной сигнал интегрируется, а затем после усиления и дальнейшей обработки поступает на предварительный расширитель длительности импульса. В канале измерения пиковой мощности входной сигнал сначала проходит предварительную обработку, а затем также поступает на расширитель входного сигнала. Измерение длительности импульса производится путем преобразования время - амплитуда. Для этого сигнал выхода усилителя поступает на быстродействующий амплитудный дискриминатор на формирующий на выходе прямоугольный импульс, длительность которого определяется параметрами входного сигнала. Далее этот импульс поступает на преобразователь время-амплитуда. На выходе преобразователя формируется пилообразный выходной сигнал, передний фронт которого равен длительности входного сигнала, а амплитуда напряжения определяется длительностью входного сигнала. В случае если входной сигнал состоит из нескольких входных импульсов, на выходе преобразователя амплитуда выходного сигнала пропорциональна сумме длительностей импульсов. С выходов каналов измерения энергии, пиковой мощности и длительности сигнала напряжения пропорциональные преобразованным параметрам поступают на входы соответствующих амплитудных детекторов. Это необходимо для уменьшения ошибки в промежутке времени между окончанием преобразований и в период считывания и обработки полученных результатов, а также для согласования с аналого-цифровым преобразователем (АЦП). С выходов амплитудных детекторов напряжения пропорциональные уровням соответствующих параметров сигналов поступают на плату контролера в и далее на АЦП. По окончании выходного сигнала управляющий процессор выдает команду АЦП на считывание, поступающих на его вход, сигналов. АЦП последовательно считывает поступившие уровни напряжений, а затем процессор после считывания соответствующих им параметров из таблиц калибровки, зашитых в соответствующие устройства памяти, передает их для индикации на дисплей. Для подсчета количества импульсов использован выход дискриминатора, сигнал с которого поступает на, расположенный на плате контролера, быстродействующий счетчик.
Алгоритм работы прибора предусматривает работу прибора в диалоговом режиме с оператором и проверку работоспособности аккумуляторных батарей. Для уменьшения температурных погрешностей прибор калибруется в различных температурных диапазонах, а данные результатов калибровки зашиваются в соответствующую область памяти. Устранение погрешности связанной с температурным прогревом элементов при включении прибора достигается за счет введения 2-х минутного интервала после чего встроенный процессор осуществляет внутреннее тестирование напряжений на аккумуляторах и начальных напряжений амплитудного детектора и только при их нормальных значениях разрешается дальнейшая работа с прибором. Наличие процессоров позволяет организовать передачу данных результатов измерений к удаленной вычислительной машине.
Общий вид спектрометра ИПИЭИ-1 изображен на рис.2
Рис1. Блок схема спектрометра ИПИЭИ-1.
Технические характеристики спектрометра ИПИЭИ-1
1. Диапазон рабочей частоты - 9,38 ГГц, = 3 см.
2. Полоса пропускания в рабочем диапазоне = 450 МГц.
3. Эффективная площадь антенны S = 1,38 см .
4. Диапазон измеряемой энергии излучения Е дж, от 0,02 T 10 до 3,7T10.
5 Диапазон измеряемой мощности излучения P Вт, от 0,05 T 10 до 5,0 T 10.
6. Диапазон измеряемой длительности импульса излучения сек, от 0,30 T10 до 550 T10.
7. Количество измеряемых импульсов в одном измерении не более 100.
8. Измерительный приемник выполнен в виде моноблочной конструкции с автономным питанием амплитудой 12 В.
9. Емкость источников питания не менее 1,2 А/ч.
10. Измерительный приемник энергии СВЧ - излучения имеет выходные, защищённые от СВЧ - наводок, разъемы для подзарядки аккумуляторных батарей, дисплей прибора также защищён от наводок.
11. Габариты блока не более 300х600х400мм.
12. Масса измерительного приемника не более 10кг.
Прибор прошел испытания в полевыхусловиях.
Для подготовки данной работы были использованы материалы с сайта http://www.laboratory.ru
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Оптимизация структуры стохастического графа c переменной интенсивностью выполнения работ
Л. П. Костина, канд. физ. - мат. наукСанкт - Петербургский государственный университетЗадача распределения ресурсов (нескладируемого типа
- Обзор биологических наномоторов
Свидиненко Юрий (Svidinenko) Многие молекулярные наномашины, давно работающие в живых организмах, могут послужить первыми строительными ки
- Детерминизм и свобода воли
Евгений КорниенкоФизическое осуществление решения не требует, чтобы идеальное сознание влияло на материальное тело. Тело подчиняется
- Механическая память на основе НЭМС-систем
Свидиненко Юрий (Svidinenko) Основа механоэлектрической молекулярной электроники - молекулы, которые при воздействии извне могут изменять с
- Почему мы видим кpасный цвет кpасным
Евгений КорниенкоКалибровка цветового восприятия происходит через ассоциативную привязку к внешнему миру. Красный предмет имеет цвет
- О сознании, как "возникающем свойстве"
О сознании, как "возникающем свойстве"Евгений КорниенкоКак относиться к правильной идее о том, что сознание - новое возникающее свойств
- Сознание и формальная логика
(Иногда "убедительное доказательство" не уступает логическому)Евгений КорниенкоМожно симулировать глупость, но не живой ум. Не родился