Скачать

Измерение уровня жидкого металла в кристаллизаторе МНЛЗ

Министерство образования Российской Федерации

Магнитогорский Государственный Технический Университет

им Г.И. Носова

Факультет Аи ВТ

Кафедра Промышленной Кибернетики и Систем Управления

Курсовая работа

По дисциплине: Технические измерения и приборы

На тему: Измерение уровня жидкого металла в

кристаллизаторе МНЛЗ

Выполнил студент группы АМ-00-1:

Серебренников Д.Г.

Проверил: Сергеев А.И.

Магнитогорск 2003

Содержание

Содержание 1

Введение 2

Способы измерения уровня жидкого металла в кристаллизаторе МНЛЗ 7

ИЗМЕРЕНИЕ УРОВНЯ С ПОМОЩЬЮ РАДИОАКТИВНЫХ ИЗОТОПОВ 7

Область применения 7

Измерение уровня металла в кристаллизаторе посредством измерительного устройства, работающего на основе радиоактивности 10

Датчики инфракрасного излучения для определения уровня металла в кристаллизаторе 14

Метод контроля уровня металла в кристаллизаторе основанный на использовании вихревых токов, индуктируемых катушкой, размещенной над зеркалом жидкого металла в кристаллизаторе. 16

Система уровень 23

Список литературы 34

Введение

Стабилизация уровня металла в кристаллизаторе является важнейшей и наиболее сложной задачей автоматизации МНЛЗ.(1)

Рассмотрим параметры, оказывающие влияние на уровень ме­талла в кристаллизаторе.

На рис. 1 схематично показана часть технологической линии разливки металла от промежуточного ковша до тянущей клети. Жидкий металл, находящийся в промежуточном ковше, под дейст­вием силы тяжести вытекает через стакан в ков­ше и попадает в кристаллизатор, где начинаются кристаллизация и образование слитка.

Дальше металл с определенной скоростью вытягивается из кристаллизатора, проходит зону вторичного охлаждения и входит в ролики тяну­щей клети, которые обеспечивают его непрерыв­ное движение по технологической линии. Затвер­девший слиток после тянущей клети разрезается на заготовки заданной длины.

Основные особенности технологии разливки следующие.

Рис.1. Технологическая схе­ма разливки ме­талла в крис­таллизатор: ПК — промежуточный ковш; К — кристал­лизатор; ТК - тянущая клеть; Р — резак.

Технологический цикл имеет, как правило, по­стоянную длительность и большую часть време­ни процесс является стационарным. Только дваж­ды, в начале разливки и в конце, имеет место нестационарный режим.

Переход от нестационарного режима к стацио­нарному можно охарактеризовать следующей си­стемой равенств:

(1)

где HT и HЗ соответственно текущий и заданный уровень ме­талла в промежуточном ковше; VT и V3 — скорости тянущей клети; hT и h3 — уровни металла в кристаллизаторе. Считается, что на установке могут быть обеспечены заданные значения HЗ, V3 и h3.

Четвертое равенство, характеризующее состояние теплового ба­ланса, не показано, поскольку, оно непринципиально для рассмат­риваемого случая.

Для подавляющего большинства МНЛЗ величины HЗ и h3 от разливки к разливке изменяются незначительно. Скорость v3 колеблется в 10 раз и более. Сечения кристаллизаторов также могут изменяться в больших пределах от 100X100 мм до 250Х 1600 мм (от 0,01 м2 до 0,4 м2), т. е. в 40 раз.

Однако изменения скорости v3 разливки и сечений кристалли­заторов характерны для разных типов МНЛЗ, а не конкретных, Для конкретной МНЛЗ эти параметры почти неизменны или из­меняются в более узких пределах, например, скорость — в 2 раза, сечение — в 4 раза.

Можно также отметить тенденцию к сохранению постоянства производительности МНЛЗ, т. е. сохраняется произведение

П = Vc • SK м3/мин,

где 1>с — скорость движения слитка; SK — сечение кристаллизатора.

При одинаковых объемах разливаемой стали это означает, что время разливки, а следовательно, и расходные характеристики стопорных пар ковшей не изменяются.

Кратко рассмотрим особенности применяемых стопорных пар промежуточных ковшей. Как правило, стаканы имеют комбиниро­ванные внутренние стенки. Верхняя часть стакана выполняется по фор­ме коноидальной насадки, которая позволяет избежать образования внутреннего сжатия струи, значи­тельно уменьшает сопротивление стакана, а также увеличивает рас­ход.

Рис. 2. Характеристика сто­порной пары:

Qn , hС , h'c , h"c— координа­ты рабочей точки; Qn — значение расхода при разли­ве стопорной пары и фик­сированном положении стопора;

h 0, hQ — смещение ко­ординаты положения стопо­ра при его закрытии.

Форма стопора в большинстве случаев определяется требования­ми высокой стойкости при дроссели­ровании металла через стопорную пару.

Результирующая расходная ха­рактеристика является сложной кривой. На ней можно выделить три основных участка (рис. 2).

Первый (нижний) характерен для случая сравнительно высокого сопротивления стопорной пары. Струя жидкого металла неплотная, имеет малую кинетическую энергию и тенденцию к периодическим дви­жениям по стенкам стакана.

Второй (средний) характеризует резкое увеличение расхода через стопорную пару вследствие эффекта подсасывания стакана. Сопротивление стопорной пары остается сравнительно высоким, кинетическая энергия струи возрастает. Поэтому стопорная пара достаточно сильно подвержена разрушающему действию жидкого металла.

Третий (верхний) характеризует выход стопора из зоны интен­сивного дросселирования. Сопротивление жидкому металлу умень­шается. Струя почти полностью заполняет стакан, стопор не ока­зывает никакого сопротивления потоку металла, и расход опреде­ляется только сечением стакана и гидростатическим напором (кри­вая переходит в прямую линию).

Для определения расхода при полностью открытом стопоре можно воспользоваться известной из гидравлики формулой

Qm =μSc2gHT, (2)

Где Sc — сечение стакана;

g — ускорение свободного падения.

Величина уровня металла в промежуточном ковше HПК должна отсчитываться от центра тяжести столба металла в стакане.

Как показывает опытная проверка, для спокойных марок стали в нормальных условиях разливки μ=0,9

Общая протяженность расходной характеристики для стопор­ной пары при наибольшей устойчивости размыву небольшая, около 15 мм. Из них на наиболее крутую и линейную часть приходится а..-7 мм. Изменяя геометрию и форму стопорной пары, можно расширить линейную часть, однако в процессе разливки при недостаточной стойкости огнеупоров могут произойти необратимые изменения конфигурации стопора и стакана и соответственно существенные искажения всей формы расходной характеристики.

Поэтому часто оказывается целесообразным выбрать такую форму дросселирующей пары, при которой ее геометрические раз­меры в процессе разливки не изменяются. В этом случае вид кривой расходной характеристики также не изменяется, она только перемещается параллельно самой себе влево вдоль оси hC (кри­вые 1, 2, 3).

Все сказанное относится прежде всего к стопору, поскольку в основном он подвержен размыву струей металла. Положение усложняется, когда значительно размывается стакан.

Одним из важных моментов перехода к стационарному режиму разливки является правильный выбор положения рабочей точки на расходной характеристике. Кроме того, для обеспечения нор­мального режима дросселирования необходимо, чтобы это поло­жение сохранялось фиксированным от разливки « разливке.

Выполнение этих требований создает дополнительные труд­ности, а иногда, при частом изменении заказов на слитки, оказы­вается чрезвычайно сложным.

Действительно, для того чтобы рабочая точка при достижений стационарного режима находилась в заданном положении, необ­ходимо:

1)строго соблюдать допуски на изготовление стаканов и стопоров;

2)сохранять постоянной производительность МНЛЗ при изменениях размеров слитка, когда сечения стаканов остаются неизменными;

3)стабилизировать заданное значение уровня металла в промежуточном ковше;

4)обеспечить постоянство вязкости стали в определенных пределах.

Одним из вариантов технологического режима является раз­ливка через стакан без дросселирования, так называемая разливка

с дозатором. В этом случае стопор выводится из зоны дросселиро­вания и расход определяется в соответствии с формулой (2).

Такой режим применяется при получении слитков малых сече­ний и обеспечивает хорошую струю металла <из промежуточного ковша. Соответствующим выбором материала огнеупора достига­ется высокая стойкость стакана и отсутствие размыва. При такой разливке требования, перечисленные в пунктах 1, 3, ,4, остаются в силе. Невыполнение одного из них приводит к нарушению ре­жима разливки и может крайне неблагоприятно сказаться на ка­честве слитка.

Рассмотренные технологические особенности разливки стали имеют большое значение для проектирования систем автоматизации МНЛЗ, в частности, системы автоматического регулирована уровня металла в кристаллизаторе. Одним из важных технологических требований является стабилизация уровня металла в кристаллизаторе, качество которой необходимо оценивать в первую очередь по амплитудному критерию.

Кроме того, с целью повышения надежности оборудовании необходимо обеспечить медленные (низкочастотные) колебаний уровня, чтобы повысить надежность оборудования. Поэтому лучшей является система, которая позволяет получить минимальные по амплитуде и частоте изменения уровня.

Величина уровня металла в кристаллизаторе связана с поступ­лением жидкой стали из промежуточного ковша (QП) и выходом слитка из кристаллизатора (QK). Уровень металла в кристаллизаторе будет неизменным, если в единицу времени будет поступать и вы­ходить одинаковое количество стали, т. е.

QП — QK = 0. (3)

Самые незначительные отклонения этой разности от нуля при­ведут к неограниченному повышению или понижению уровня ме­талла.

Величины QП и QK не зависят от уровня металла в кристалли­заторе, поэтому рассматриваемый объект регулирования не обла­дает самовыравниванием. На низких частотах он описывается дифференциальным уравнением первого порядка. Решение уравнения показывает, что реакция на выходе (уровень металла в кристалли­заторе) представляет собой интеграл от входной функции (соот­ношения расходов металла QП и QK). Таким образом, объект яв­ляется интегрирующим и, следовательно, создает сдвиг по фазе между уходом и выходом .

Для выполнения (3) необходимо воздействовать на QП или QK, т. е. изменить положение стопора или скорость вытягивания слит­ка. В небольших пределах изменение может быть достигнуто за счет повышения или понижения уровня металла в промежуточном ковше.

Анализ возмущающих воздействий показывает, что в стационарном режиме разливки нет интенсивных возмущений.

Незначительные изменения QK вызываются возмущениями по нагрузке на тянущую клеть, при которых скорость вытягивания слитка может изменяться не более чем на 5%.

Изменения QK могут быть вызваны колебаниями уровня метал­ла в промежуточном ковше, а также размывом стопора. Оба воз­мущения являются низкочастотными, т. е. медленно изменяют зна­чение QK, при этом величина влияния на условия разливки пер­вого незначительна.

Таким образом, основной задачей является обеспечение высо­кой устойчивости в системе автоматического регулирования уров­ня путем применения соответствующих регуляторов.

С этой точки зрения системы автоматического регулирования со стопором или тянущей клетью имеют несколько разные возмож­ности.

Выше отмечалось, что при размыве стопора расходная харак­теристика смещается. Изменения расхода, связанные с этим сме­щением, могут быть весьма большими.

При использовании пропорционального регулятора из-за суще­ственной нелинейности расходной характеристики, а также инте­грирующих свойств объекта для получения достаточного запаса устойчивости приходится снижать коэффициент усиления. Это в свою очередь приводит к значительному увеличению статиче­ской ошибки.

Для уменьшения статической ошибки необходимо ввести кор­рекцию по интегралу. Однако при этом снижается запас устойчивости и в системе возникают колебания. Таким образом, значи­тельное смещение расходной характеристики — явление весьма нежелательное, однако избежать его в системе со стопором прак­тически невозможно.

В системе регулирования уровня металла стопором имеются и другие трудности. Это высокий коэффициент регулирующего органа (стопорной пары) и значительные его изменения при изме­нении положения рабочей точки на расходной характеристике. Первое, как известно, в системах регулирования нежелательно, так как требует высокой точности работы регулирующего прибора, исполнительного механизма и регулирующего органа. Кроме того; не допускаются запаздывание, гистерезис, зона нечувствитель­ности.

Практически это означает необходимость выполнения достаточ­но высоких требований для элементов системы, что, естественно, удорожает их изготовление и эксплуатацию. Если добавить к это­му, что исполнительный механизм и регулирующий орган (стопорный механизм) работают в условиях резкого перепада температур, то станут ясными технические трудности выполнения системы.

Не менее существенным в этих условиях является стабильность общего коэффициента усиления в системе, величина которого зависит от положения рабочей точки на расходной характеристике. Изменение ее положения может привести к резкому ухудшению процесса регулирования. Поэтому во время разливки недопустимо понижение уровня в промежуточном ковше ниже определенного значения, а также повышение скорости разливки выше рабочей для данного сечения слитка.

В системе с тянущей клетью можно получить более высокий запас устойчивости, что объясняется следующим: во-первых, харак­теристики в системе являются линейными в широком диапазоне величин сигналов, что позволяет увеличить коэффициент усиле­ния пропорциональной части регулятора; во-вторых, вследствие высокой стойкости стакана изменения расхода незначительны, и, следовательно, статическая ошибка ограничена. Введение ин­теграла в закон регулирования ухудшает запас устойчивости системы несущественно.

Рассмотрим еще один момент, важность и влияние которого одинаковы для систем регулирования со стопором и тянущей клетью, а именно, работу систем при изменении сечений разливае­мых слитков, т. е. при изменении поперечных размеров кристалли­заторов. Частота такой смены может быть различной (несколько раз в день, один раз в неделю, месяц, год).

Интерес представляет прежде всего частая смена сечений, так как это наиболее сложный и общий случай. Уже отмечалось, что для МНЛЗ одного типа площади сечения слитков могут изменяться, примерно в 4 раза. Дальнейшее расширение диапазона сечений - нецелесообразно по технологическим и конструктивным соображе­ниям, поэтому названную величину можно считать предельной,

Известно, что чувствительность объекта к возмущению обрат­но пропорциональна площади поперечного сечения резервуара, т. е. коэффициенту емкости. Чем больше площадь сечения, тем больше коэффициент емкости и тем меньше чувствительность объекта к возмущению. Это означает, что коэффициент усиления в системе автоматического регулирования также изменяется в 4 раза.

В связи с этим могут быть применены различные способы, ста­билизирующие работу систем, однако наиболее простым является улучшение фазовых характеристик систем регулирования и повы­шение общего коэффициента усиления без изменения запаса устойчивости.

Если такая настройка будет выполнена для самого высокого коэффициента усиления в системе, то снижение его в 4 раза только увеличит запас устойчивости. При этом качество регулирования останется достаточно высоким, так как одновременно с пониже­нием коэффициента усиления чувствительность уровня к возму­щениям уменьшается.

Хорошие результаты можно получить, используя другие вариан­ты компромиссной настройки, а также ступенчатое изменение коэффициента усиления при переходе от одного диапазона сечения к другому.

Применение системы автоматического регулирования уровня металла в кристаллизаторе при получении слитков малых сечений не встречает особых трудностей.

Увеличение коэффициента усиления в системе, связанное с уменьшением сечения кристаллизатора, может быть скомпенси­ровано. В системе со стопором частичная компенсация происходит в связи с уменьшением диаметра стакана, так как для малых се­чений производительность машин МНЛЗ все-таки снижается. Рас­ходная характеристика становится более пологой.

При стабилизации уровня с помощью тянущей клети снижение коэффициента усиления может быть достигнуто за счет регулирую­щего органа.

В обоих случаях выбор требуемого коэффициента усиления можно осуществить с помощью регулирующего прибора. Тем не менее хорошее качество регулирования уровня может быть достиг­нуто только за счет улучшения фазовых характеристик, поэтому целесообразно применение корректирующих цепей.

В статье рассмотрены в основном все особенности систем автоматического регулирования металла в кристаллизаторе, вытекающие из технологических режимов работы МНЛЗ, применяемых в настоящее время.

Выводы из вышеизложенного могут быть следующие.

1)В силу широкого диапазона технологических режимов работы МНЛЗ, а также конструктивных решений оборудования в настоящее время применяются системы автоматического регулирования с использованием стопора и тянущей клети. Это необходимо учитывать при проектировании систем.

2)Системы автоматического регулирования должны предусматривать особенности технологических режимов и конструкцию оборудования и обладать необходимой для этой цели универсальностью.

3)Анализ особенностей в системах регулирования со стопором и тянущей клетью показывает, что правильным и возможным для реализации универсальности является применение вариантных решений проектирования с использованием типовой аппаратуры.

Способы измерения уровня жидкого металла в кристаллизаторе МНЛЗ

В последнее время разработаны новые методы непрерывной разливки стали, в соответствии с которыми разливаемый металл до образования наружной корки не подвергается воздействию ок­ружающей атмосферы. Предложены две технологи­ческие схемы разливки: под некоторым избыточ­ным давлением нейтрального газа и с вакуумированием металла непосредственно в потоке.(2)

При разливке под давлением в среде за­щитного газа исключается возможность интен­сивного окисления металла кислородом окружа­ющей атмосферы; при разливке под разрежением, кроме того, удается выделить и удалить из раз­ливаемого металла нежелательные газовые компо­ненты»

Однако осуществление предложенных схем в связи с необходимостью тщательной гермети­зации всего тракта разливки требует усложнения конструкции машин и полной автоматизации сис­темы управления, поскольку в этом случае ручное управление практически исключается.

В условиях избыточного давления нейтраль­ного газа между промежуточной емкостью и кри­сталлизатором важное значение приобретает стабилизация уровня жидкого металла в кристалли­заторе.