Скачать

Из истории развития теории поля

`ИЗ ИСТОРИИ РАЗВИТИЯ ТЕОРИИ ПОЛЯ

План.

  1. Введение
  2. Возникновение идеи близкодействия в физике Декарта
  3. Возникновение идеи дальнодействия в физике Ньютона
  4. Представления о природе электричества и магнетизма в “эпоху невесомых”; период господства концепции дальнодействия
  5. Установление связи электричества и магнетизма как важнейший этап, подготовивший выдвижение идеи поля
  6. Идея близкодействия в работах Фарадея
  7. Создание теории электромагнитного поля Максвеллом
  8. Утверждение теории Максвелла
  9. Заключение
  10. Список используемой литературы

Введение.

Вопрос о том, как передается действие от одного тела к другому, приобрел особую остроту в связи с установлением закона всемирного тяготения. Учение об электричестве и магнетизме на рубеже XVI-XVII вв. только зарождалось, а в области тяготения в результате работ Ньютона был уже сформулирован в математической форме закон тяготения. Но этот закон не давал ответа на другой вопрос, каким образом удаленные друг от друга тела действуют друг на друга. В этот период и возникают две точки зрения на проблему передачи действия на расстояние.

1. Возникновение идеи близкодействия в физике Декарта.

Родоначальником одной из них является французский мыслитель Рене Декарт. Декарт и его последователи (картезианцы) пытались объяснить тяготение, не прибегая к понятию силы, и представить его как чисто кинематический эффект, обусловленный движением любого вещества, заполняющего все пространство, невесомого флюида – эфира. Некоторое представление о таком объяснении может дать хотя бы следующая мысль в духе Декарта. В жидкости, которая вращается в сосуде, легкие тела устремляются (как бы тяготеют) к оси вращения и подобно этому в вихре среды, заполняющей мировое пространство, вызванном вращением Солнца, планеты испытывают тяготение к Солнцу. И свет, по Декарту, рассматривался как давление, передающееся частицами Среды от источника к глазу. Электрические и магнитные явления объяснялись вихрями тонкой материи, которая выходит, например, из одного полюса магнита и входит в другой, действуя при этом на железные тела, находящиеся вблизи магнита.

Все объяснения такого рода совершенно искусственны и не вытекают из опытных фактов. Но объяснения Декарта получили широкое распространение, потому что были просты и наглядны. Для нас важны не сами эти объяснения, а лежащая в их основе идея: тяготение, электрическое и магнитное действия передаются от тела к телу через среду.

Принцип, согласно которому действие передается через среду в течение некоторого времени, получил название принципа близкодействия. Этот принцип берет свое начало от Декарта, хотя попытки объяснить передачу действия за счет существования особой среды – эфира можно найти и у древних мыслителей, справедливо полагающих, что “тело не может действовать там, где его нет”. В том же духе объяснял электрические явления и английский ученый Вильям Гильберт.

Однако при всей внешней простоте кинематические представления о тяготении были абсолютно бесплодны – из них не вытекало ничего нового. Поэтому картезианские идеи не смогли долгое время выдерживать конкуренцию с теорией тяготения, выдвинутой Ньютоном.

2. Возникновение идеи дальнодействия в физике Ньютона.

Из закона тяготения Ньютона вытекало множество следствий и объяснений различных земных и небесных явлений. Так, например, закон объяснял, почему движение планет подчиняется законам Кеплера. Ньютоновское объяснение тяготения сводилось к утверждению о том, что на каждое тело со стороны других действует сила, вычисляемая по установленному им закону. Почему эта сила действует, как передается тяготение на огромные расстояния, т.е. каков механизм тяготения, Ньютон объяснить не смог, так как не было необходимых фактов, на базе которых можно было бы построить обоснованную гипотезу, а надуманных гипотез он не признавал. Последователи Ньютона (ньютонианцы), восхищенные успехами построенной им теории, довели до абсурда его тезис “Гипотез я не измышляю”– стали вообще отрицать необходимость отыскания причин явлений, считая, что для объяснения всех явлений надо просто вводить соответствующие силы, не задумываясь об их происхождении.

Эта тенденция утвердилась в физике на долгие годы. Ньютон был бесспорно прав, отрицая умозрительные и надуманные гипотезы картезианства и не ставя преждевременного в ту эпоху вопроса “почему?”.

Таким образом, от работ Ньютона берет начало второй принцип, связанный с проблемой взаимодействия, – принцип дальнодействия, согласно которому действие передается от тела к телу без участия какой-либо промежуточной среды, и притом мгновенно.

Таким образом, к XVIII в. оформляются две точки зрения на проблему взаимодействия. Одна основана на принципе дальнодействия, другая – на принципе близкодействия. Влияние взглядов Ньютона на последующее развитие физики было столь велико, что и учение об электричестве и магнетизме строилось в духе ньютоновской концепции дальнодействия, требующей установления математических законов взаимодействия электрических и магнитных сил без выяснения их природы. Так было вплоть до эпохи Фарадея – Максвелла.

Но помимо вопроса о том, как взаимодействуют магнитные и наэлектризованные тела, требовали решения другие вопросы: что такое электричество и магнетизм? Чем магнитные и наэлектризованные тела отличаются от “обычных” тел и друг от друга? И теория электромагнитного поля не могла быть создана до установления взаимосвязи электричества и магнетизма. Обращусь теперь к рассмотрению развития взглядов на природу электричества и магнетизма.

3. Представления о природе электричества и магнетизма в “эпоху невесомых”; период господства концепции дальнодействия.

Первоначально электрические и магнитные явления отождествлялись, так как было известно, что наэлектризованные тела, как и магнитные, лишь притягивают другие тела. Первая серьезная работа в области электричества и магнетизма принадлежит В. Гильберту (1600 г.), который, изучая магнитные явления, резко отграничивает их от электрических (магнитные свойства “вечны”, электрические же можно возбудить и уничтожить, в отличие от электрических взаимодействий магнитные проявляются и как притяжения и как отталкивания; электрические слабее магнитных). Исследование электрических явлений пошло значительно быстрее после создания первого генератора электричества – электрической машины Отто фон Герике, бургомистра немецкого города Магдебурга, человека изобретательного ума, дипломата, общественного деятеля, инженера и тонкого экспериментатора, который на шестом десятке лет после своих знаменитых опытов с “магдебургскими полушариями” занялся электричеством. Вращающийся шар из серы при трении о ладонь руки позволил Герике получать большие электрические заряды. Он обнаружил притяжение и отталкивание зарядов, электрическую искру, а также проводимость льняных ниток.

Спустя семь десятков лет голландским ученым Мушенбруком был получен новый источник больших электрических зарядов – первый конденсатор – лейденская банка. Желая зарядить воду в стеклянной банке, Мушенбрук опустил цепочку от генератора в сосуд с водой, а потом вынул ее. О том, что он при этом испытал, говорят слова из его сообщения: “Я думал, что пришел конец” и “не согласился бы подвергнуться еще раз такому испытанию даже за королевский трон Франции”. Опыты с лейденской банкой,

вызывающие физиологическое действие электричества и сопровождающееся искровым разрядом, стали повторять очень многие и не только в лабораториях, но и при дворе, в аристократических гостиных. 700 взявшихся за руки парижских монахов, а в другой раз 180 солдат при дворе Людовика XV, содрогающихся от электрического разряда конденсатора, – таковы были первые цепи электрического тока, первые колебательные (в прямом смысле!) контуры.

Электричество стало модным, что способствовало возбуждению интереса к этой области явлений. Развитию исследований способствовала надежда на практическое использование электричества для лечебных целей, а также стремление на основе изучения электричества решать проблему грозозащиты, поскольку утверждалась мысль об электрическом характере молнии.

Бенджамин Франклин (1706-1790), сын ремесленника, выдающийся американский дипломат, борец за независимость Америки и равноправие негров, популярный писатель, обаятельный человек, занимался физикой всего семь лет, но сделал очень многое – с него начинается теоретическое осмысление электричества. Впервые в его работах появляются современные термины: “положительный” и “отрицательный” заряд, “разряд”, “конденсатор” и т.д. По Франклину, электричество – это особая невесомая субстанция (флюид), состоящая из мельчайших отталкивающихся частиц и содержащаяся во всех телах. Избыток ее означает положительную электризацию, недостаток – отрицательную. Это представление оказалось очень плодотворным, так как многое объясняло: одновременную электризацию трущихся тел – переходом флюида от одного тела другому; проводимость – движением субстанции в проводниках; конденсацию в лейденской банке – накоплением флюида и т.д.

Вместе с этим возникают теории, в которых фигурируют два рода флюидов – положительный и отрицательный. Франц Эпинус, долгое время работавший в России, считал электричество и магнетизм разнородными явлениями (ведь магнит не притягивает электризованное тело) и ввел в физику понятие об особом магнитном флюиде. Соответствующие уровню науки того времени теории, основанные на представлениях об электричестве и магнетизме как особых жидкостях, господствовали много десятков лет, и в рамках их сформировались многие современные понятия: “количество электричества”, “сохранение заряда”, “электроемкость” и т.д.

Лишь М.В. Ломоносов настаивал на единстве электричества, магнетизма и света, считая, что все эти явления есть процессы, происходящие в эфире. Если Эпинус развивал ньютоновское представление о дальнодействии, то Ломоносов стоял на принципах, примыкающих к близкодействию, предвосхищая в своих догадках на 100 лет идеи Максвелла. Высказывания Ломоносова не получили широкой известности, и даже на родине они не были поняты и оценены.

Итак, в XVIII в. господствовало убеждение, что электричество и магнетизм – это особые материальные субстанции; взаимосвязь электричества и магнетизма отрицалась; проблема передачи действия решалась в духе дальнодействия.

Позиции дальнодействия укрепляются еще больше после открытия закона взаимодействия зарядов. Изучая проблемы кручения нитей, французский ученый Шарль Кулон (1736-1806) обнаруживает, что угол закручивания нити пропорционален моменту приложенных сил, и это наталкивает его на создание точнейших крутильных весов (с чувствительностью 10 -7 г/град) для измерения сил по углу закручивания. С помощью этих весов он устанавливает закон взаимодействия зарядов и магнитных полюсов, характеризуемых так называемыми “магнитными массами” m. Открытые им законы поражали тем, что повторяли “по форме” закон тяготения Ньютона:

q 1 q 2 m 1 m 2

F ЭЛ. = k и F М = k`

r 2 r 2

(Как было не увериться еще раз в справедливости дальнодействия Ньютона!)

Начался XIX в., а понятия поля в физике еще не существовало и не только из-за господства дальнодействия, но и из-за незнания связи электричества и магнетизма. О связи между этими явлениями не знали потому, что изучали фактически области электро- и магнитостатики, а ведь электромагнетизм является динамическим эффектом, связанным с движением зарядов, т.е. с током. Но электрического тока как объекта изучения в физике еще не было, так как не существовало источника постоянного длительного тока – конденсатор же давал лишь кратковременный разряд. Начало изучения постоянного электрического тока связано с именами двух итальянских ученых – Луиджи Гальвани и Алессандро Вольта.

4. Установление связи электричества и магнетизма как важнейший этап, подготовивший выдвижение идеи поля.

Луиджи Гальвани (1737-1798) – анатом по профессии. Случилось так, что при препарировании лягушек в его лаборатории кто-то привел в действие электрическую машину. В момент проскакивания электрической искры мышцы препарированной лягушки, к которой в это время прикасались скальпелем, стали сокращаться. Как было не заинтересоваться этим – может быть электричество оживляет организм