Звуковой локатор
Под словом «локация» понимается определение местоположения предметов, измерение их координат и параметров движения. В живой природе используются разнообразные формы и способы локации. Человек и большинство животных определяют местоположение окружающих предметов благодаря органам чувств, в основном зрению и слуху. Эти системы в функциональном отношении у некоторых животных доведены до высочайшего совершенства. Достаточно вспомнить о необычайной остроте зрения у дневных хищных птиц или точности звуковой пеленгации добычи совами.
Для обнаружения объектов окружающей среды некоторые животные используют и другие виды информации. Глубоководные кальмары, например, помимо обычных органов зрения, наделены особыми рецепторными приборами, способными улавливать инфракрасные лучи, а своеобразные органы — «термолокаторы» гремучих змей служат для поисков добычи (они воспринимают тепловое излучение живых существ и реагируют на разность температур в тысячную долю градуса).
Приведенные примеры, несмотря на их разнообразие, представляют собой различные варианты так называемой пассивной локации, когда исследуемые животные обнаруживают какие-либо объекты только путем приема той энергии, которую непосредственно излучают или переизлучают сами. Сравнительно недавно казалось, что возможности живой природы ограничиваются лишь средствами пассивной локации, т. е. более или менее чувствительными органами дистантного обнаружения.
В самом начале XX в. человечество создало принципиально новый, активный способ локации; при котором невидимую прежде цель облучают потоком электромагнитной или ультразвуковой энергии и обнаруживают с помощью той же энергии, но уже отраженной от цели. Радио- и гидролокационные станции (приборы активной локации) пришли на смену различного рода «слухачам» (приборам пассивного обнаружения) и в настоящее время получили широкое распространение при решении народно-хозяйственных, военных и космических проблем.
Области применения в технике радио- и акустической локации различны, ибо различны степень ослабления применяемых видов колебаний при распространении в неоднородных средах и скорость распространения электромагнитных и звуковых волн. Известно, что радиоволны в водной среде очень быстро затухают, тогда как звуковые волны распространяются на большие расстояния, и, наоборот, в воздухе звуковые колебания ослабляются во много раз сильнее, чем электромагнитные. Для обнаружения объекта в атмосфере и за ее пределами применяют радиолокаторы, так как скорость распространения радиоволн 300000 км/с, а скорость распространения звука в воздухе — лишь 340 м/с. Акустическая локация воздушных и особенно космических целей часто невозможна, ибо их собственная скорость может во много раз превосходить скорость звука. Акустическая локация или гидролокация стала основным средством обнаружения подводных объектов (скорость распространения звука в воде — 1550 м/с).
Принципы радиолокации, несомненно, подсказали биологам путь к решению одной из старых загадок природы, которая на протяжении длительною времени не поддавалась научному объяснению. Эту загадку поставили перед учеными обыкновенные летучие мыши. Что же это за животные и почему, они будоражили ученый мир на протяжении 150 лет? Попробуем в этом разобраться.
Кто они, летучие мыши
С давних пор совершенно необоснованно летучие мыши (см. приложения, рисунки 2, 3, 4) пользуются дурной славой. «Вопрос о летучих мышах есть вопрос другого света, вопрос, который пахнет ересью... Все покрыто тайной, обманом и мраком в этих двусмысленных существах, представляющих собой высшую степень противоестественности, мерзости и фантастичности. Летучая мышь - это химера, чудовищное невозможное существо, символ грез, кошмаров, призраков больного воображения. Всеобщая неправильность и чудовищность, замеченная в организме летучей мыши, безобразные аномалии в устройстве чувств, допускающие гадкому животному слышать носом и видеть ушами, все это как будто нарочно приноровлено к тому, чтобы летучая мышь была символом душевного расстройства и безумия». Так описывал летучих мышей французский натуралист А. Туссенель в 70-х годах прошлого столетия, выражая тем самым широко распространенное мнение об этих ночных безобидных животных. И даже в наше время, когда летучая мышь полностью «реабилитирована» и раскрыта ее тайна ориентации в темноте, все же для многих встреча с ней оставляет неприятное ощущение, и летучие мыши продолжают подвергаться бессмысленному гонению и даже уничтожению.
История открытия эхолокации
Хоть и велик человек, но не бесконечна его жизнь. Перед ним необъятная ширь пространства и необозримая глубь времени. Обо всем хочется узнать. Но вот беда — слишком быстро бегут годы.
Много ли человек может пройти, измерить своими маленькими шагами? И много ли он может сделать за те считанные дни, которые живет на земле? Но он не один, и в этом его сила.
Ладзаро Спалланцани (см. приложения, рисунок 1.) спешил. Ему уже было за шестьдесят. Годы давали о себе знать. Несколько лет выдающийся итальянский натуралист, профессор университета в Павии, занимался летучими мышами. Эти небольшие животные охотятся почти исключительно ночью, часто настигая добычу сверху или в лесных зарослях. Ясно, что визуальное обнаружение насекомых в таких условиях невозможно. Но тогда как же «видят» летучие мыши, как они находят дорогу в темноте? Вот вопрос, который мучил ученого.
Шел 1793 год. Только что кончилось время «высоких» и отвлеченных умозрительных рассуждений, наука приступала к экспериментальной проверке всего того, что окружало человека.
Ранним летним утром на колокольню собора города Павии поднялся старый человек. Это был Спалланцани. Сумрак только что начинал рассеиваться, и летучие мыши, возвращаясь из ночных полетов, прятались по разным закоулкам под сводами старой башни. Ученый ловил летучих мышей и сажал в мешок. Потом, нагруженный тяжелой ношей, он спустился с колокольни и пошел домой.
Дома Спалланцани выпустил пойманных зверьков в большом зале. Он решил вплотную заняться секретом ночных полетов летучих мышей. Только эксперимент мог дать ответ на этот вопрос. От потолка к полу были натянуты тонкие нити, они опутали всю комнату. Выпуская мышь из мешка, экспериментатор заклеивал ей глаза воском. И вот по старому залу заметались крылатые тени.
Но ни одна слепая летучая мышь не задела за нитку! Ни одна! Словно глаза им были и не нужны, чтобы видеть.
Не удовлетворившись опытами, в которых летучие мыши продолжали спокойно порхать с заклеенными глазами, Спалланцани решил продолжить начатый эксперимент, изменив несколько условия. Он выпустил на волю несколько зверьков, лишенных зрения, и через четыре дня снова отправился на колокольню собора.
В этот раз ученый снова наловил целый мешок летучих мышей. Среди них были и слепые мыши. В их желудках было полно комаров. Поймать в темноте насекомое—задача более сложная, чем пролететь между двумя натянутыми нитями. Значит, чтобы охотиться, этим зверькам совсем не нужны глаза. Спалланцани решил, что летучие мыши наделены каким-то особым, неведомым нам шестым чувством, которое и помогает им ориентироваться в полете.
Еще на целом ряде опытов ученый убедился, что мыши великолепно обходятся без зрения, но зато всякое повреждение слуха для них губительно.
В чем дело? Не могут же они видеть ушами?
Так зародилось сомнение. Чтобы все это объяснить, нужны были новые эксперименты. Для этого были изготовлены крошечные медные трубочки, полые внутри, которые вставлялись в уши летучих мышей. Но они по-прежнему спокойно летали, свободно и уверенно лавируя между десятками тонких нитей, натянутых в комнате. Зато стоило заткнуть трубочки пробками, как мыши бессильно падали, натыкаясь на все подряд.
Но как слух заменял им зрение? На этот вопрос никто не мог ответить. Мыши летали беззвучно, а стены и натянутые нити звуков не издавали, поэтому отличную ориентацию мышей вовсе нельзя было объяснить обостренным чувством слуха. Тогда как же видели летучие мыши? Этого Спалланцани так и не узнал. Его открытия в те годы были отвергнуты, высмеяны, а потом и забыты. Осталось только название «спалланцаниева проблема».
В середине прошлого столетия решением этой проблемы ученые заинтересовались одновременно в разных странах.
Любопытно, что первый, кто ею занялся, был не зоолог, а инженер — американский изобретатель Хайрем Максим. В годы гражданской войны его фамилией называли станковый пулемет, который он изобрел. Установленный на тачанке «максимка» был грозным оружием против белогвардейцев.
Плодовитый изобретатель, пытавшийся, между прочим, в свое время построить самолет с паровым двигателем, заинтересовался навигационным методом летучих мышей. Он предположил, что мыши издают звуки, неслышимые для человеческого уха, и ориентируются по возвратившемуся эху. На основании собственной биологической гипотезы Максим предложил новый прибор — эхолокатор, который должен был предотвращать в тумане столкновения судов с айсбергами.
Верная в принципе догадка была все же неточна. Ее автор считал, что первичным сигналом у мышей является звук от взмахов их крыльев. Поэтому он рекомендовал оборудовать суда источником звука очень низкой частоты, порядка 15 Гц. Приемник низкочастотных сигналов предполагалось установить в носовой части корабля. Слабое эхо, по замыслу изобретателя, должно было приводить в действие маленький колокольчик, а сильное — большой гонг, чтобы команда могла судить о серьезности опасности.
Новая идея навигации не привела ни к каким практическим результатам. Ошибка Максима была в том, что он неправильно определил частоту звукового сигнала, на который работал его прибор. Летучие мыши действительно пользуются в полете звуком, но не низких, а очень высоких частот— ультразвуком.
Другой ученый, голландец Свен Дийграаф, заметил, что летучая мышь прежде, чем пуститься в полет, раскрывает рот. Очевидно, предположил ученый, она издает неслышимые для человека звуки и «ощупывает» ими окрестности. В полете летучие мыши тоже то и дело раскрывают рот, даже когда не охотятся за насекомыми.
Дийграаф рассуждал так: поскольку стены и предметы, встречающиеся летучей мыши в полете, не издают никаких звуков, значит, кричат сами мыши. Эхо их собственного голоса, отраженное от окружающих предметов, извещает зверьков о препятствии на пути.
Это наблюдение навело ученого на мысль проделать следующий опыт. Он надел на голову зверька бумажный колпак. Спереди, точно забрало рыцарского шлема, в колпаке открывалась и закрывалась маленькая дверка. С закрытой дверкой на колпаке мышь совсем не могла лететь и то и дело натыкалась на предметы. Стоило лишь в бумажном колпаке поднять забрало, как зверек преображался, его полет вновь становился точным и уверенным.
Результаты своих наблюдений Дийграаф опубликовал в 1940 году, а в 1946 году советский ученый Е. Я. Пумпер сделал очень интересное предположение, которое хорошо объясняет физическую природу эхолокации. Он считал, что летучие мыши каждый новый звук издают сразу же после того, как услышат эхо предыдущего сигнала. Таким образом, ультразвуковые импульсы рефлекторно следуют друг за другом, а раздражителем, вызывающим их, служит эхо, воспринимаемое ухом.
Значит, чем ближе летучая мышь подлетает к препятствию, тем быстрее возвращается эхо и, следовательно, тем чаще издает зверек новые крики. Наконец, при непосредственном приближении к препятствию ультразвуковые импульсы начинают следовать друг за другом с исключительной быстротой. Это сигнал опасности. Летучая мышь инстинктивно изменяет курс полета, уклоняясь от направления, откуда отраженные звуки приходят слишком быстро.
Дальнейшие опыты показали, что летучая мышь перед стартом издает в секунду лишь 5—10 импульсов. В полете учащает их до 30. При приближении к препятствию ультразвуковые сигналы следуют еще чаще: 50 — 60 раз в секунду. Некоторые мыши во время охоты на ночных насекомых, настигая добычу, издают даже 250 «криков» в секунду.
Но не все звуки, используемые летучими мышами для навигации, совершенно не слышны.
Может быть, кому-нибудь из вас случалось теплым вечером наблюдать за полетом мышей и слышать издаваемые ими звуки. Они настолько слабы, что их легко принять за шорох листьев. Очевидно, поэтому-то их Спалланцани и не заметил.
Длительность слабо слышимой части импульсного сигнала весьма мала. Этот звук напоминает тиканье ручных часов. Однако, в отличие от часов, частота тиканья, издаваемого летучей мышью, может заметно изменяться.
Когда летучая мышь летит прямо на удаленное от нее препятствие, то она издает от пяти до двадцати гиканий в секунду. В тех случаях, когда перед ней возникает более сложная навигационная задача, например когда ей нужно избежать столкновения с живым предметом или с палкой, поднятой над головой, можно услышать, что тиканье внезапно учащается, пока не перейдет в слабое жужжание. То же самое происходит перед посадкой летучей мыши. Звуки тиканья при этом настолько слабы, что услышать их можно только в полной тишине и проявив значительное терпение.
Объяснить тайну летучих мышей помогло появление новой электронной аппаратуры. В одной из лабораторий физического факультета Гарвардского университета в США Г.Пирс начал проводить исследования по изучению свойств ультразвуков, т. е. звуков, лежащих выше слухового порога человека. Под его руководством в 1937 г. был создан прибор — звуковой детектор, позволяющий улавливать звуки широкого диапазона частот. Именно этот прибор зарегистрировал неслышимые звуки летучих мышей, когда в 1938 г. студент-биолог упомянутого выше университета Дональд Гриффин принес в лабораторию Пирса полную клетку летучих мышей. Вспоминая об этом, Гриффин писал: «Как только я поднес летучих мышей к аппарату Пирса, сразу же обнаружилось, что они издают множество звуков, но почти все эти звуки попадают в диапазон частот, лежащих выше порога слышимости человека».
Пирс и Гриффин провели частотный анализ звуков, излучаемых летучими мышами в полете, и установили, что частоты этих звуков лежат в диапазоне 30000— 70000 Гц при наибольшей интенсивности в области 45000—50000 Гц. Далее они обнаружили, что животные издают звук не непрерывно, а в виде дискретных импульсов, длительность которых составляет 1/100 – 1/200 с.
Однако установление факта излучения ультразвука летучими мышами, несмотря на всю его важность, еще не объясняло способность животных беспрепятственно летать в полной темноте. Требовалось в условиях точного эксперимента доказать, что летучие мыши действительно используют ультразвук в целях ориентировки в пространстве и что они способны воспринимать эхо от этих звуков, отраженных от встречаемых на пути препятствий. Используя барьеры вертикально натянутых проволок, Гриффин и Галамбос получили количественную оценку способностей летучих мышей преодолевать препятствия при частичном или полном выключении зрения, слуха и при закрывании рта.
Эксперименты Гриффина и Галамбоса вновь подтвердили, что летучие мыши отлично ориентируются и без участия зрительной рецепции, но полное (двустороннее) или частичное (одностороннее) выключение слухового аппарата влечет за собой резкое ухудшение их способностей своевременно обнаруживать и избегать препятствия. Однако в этих опытах авторы пошли дальше своих предшественников. Они показали, что закрывание рта летучей мыши, лишающее ее возможности издавать эти высокочастотные звуки, оказывается столь же эффективным, как и плотное затыкание ее ушей.
Первоначально летучих мышей считали единственными представителями животного мира, использующими эхолокацию в целях ориентировки в пространстве.
Но уже 50-е годы принесли новые неожиданные открытия. В 1953г. звуковая локация была обнаружена у ночных птиц гуахаро, гнездящихся в глубоких пещерах Венесуэлы, а несколько позднее — у стрижей-саланганов, у одного из родов группы крыланов и ластоногих (см. приложения, рисунки 5, 6, 7), некоторых насекомых и грызунов. Но наибольшую сенсацию вызвали сообщения о наличии эхолокации у обитателей водной среды — китообразных (см. приложения, рисунки 8, 9). Честь этого открытия признается за пионером в изучении поведения и биологии дельфинов в неволе, куратором океанариума в Сан-Августино А. Мак-Брайдом.
Использование локации в технике
В туманные декабрьские дни 1943 года из портов Англии вышел большой караван грузовых кораблей. Корабли везли военные грузы в один из северных морских портов нашей Родины. У берегов вражеская воздушная разведка обнаружила караван. Немцы выслали наперерез англичанам «карманный» линкор «Шарнхорст».
Военные корабли, охранявшие караван, с помощью специальной радиоаппаратуры нащупали немецкий линкор и встретили врага огнем. Во мраке полярной ночи стрельба корректировалась по наблюдениям на экранах радиолокационных станций.
«Шарнхорст» попытался уйти от обстрела. Несколько раз ему это удавалось. Но радиолуч, способный пройти сквозь тьму и туман, вновь и вновь нащупывал немецкий линкор.
Бой в черноте полярной ночи длился около десяти часов. «Шарнхорст» пошел ко дну...
В том же 1943 году английская эскадра при помощи радио обнаружила в просторах Атлантического океана немецкий линкор «Бисмарк». Из низко нависших туч лил дождь. В этом морском сражении обе стороны применили радиолокационную аппаратуру.
Бой продолжался три дня. «Бисмарк» пошел ко дну от попадания трех торпед, после того как был предварительно поврежден огнем артиллерии. Однако немецкий линкор своим огнем пустил ко дну самый большой в то время в Англии крейсер «Худ».
По утверждению специалистов, гибель «Худа» последовала из-за консервативности командования английского крейсера.
Дистанцию до «Бисмарка» на «Худе» определили по показаниям оптического дальномера и показаниям радиолокационной станции. Когда между ними оказалось расхождение, то командование предпочло довериться оптике. Залп с «Худа» лег с недолетом: дистанцию правильно определила радиолокационная станция и неверно оптический дальномер. Внести поправку уже не удалось. Ответные снаряды с «Бисмарка» пробили броневой пояс крейсера и по чистой случайности попали в артиллерийский погреб. Последовал взрыв, и «Худ» быстро затонул.
Радиолокация была самой большой тайной в годы второй мировой войны. Не только гражданское население воюющих стран, но и не посвященные в эту тайну военные могли только удивляться необычному искусству операторов радиолокационных станций обнаруживать вражеские корабли и самолеты в темноте и в тумане.
И только после войны в печати стали появляться сведения об их устройстве и принципе действия. Оказалось, что действуют они точно так же, как и летучие мыши. Разница только в том, что мыши расстояние до препятствия определяют по запаздыванию звукового эха, а радиолокационные станции - по эху радиоволн.
Вы стоите у скалы и, громко крикнув, слышите эхо своего голоса. Зная скорость звука и измерив по часам время от начала крика до прихода эха, легко определить расстояние до скалы. Подобно этому радиолокатор излучает мощный электромагнитный сигнал, а затем принимает его слабое отражение. Правда, скорость распространения радиоволн не 340 м/с, как у звука, а 300 000 000 м/с. Почти в миллион раз больше! Поэтому и время прохождения сигнала до препятствия и обратно измеряется не в секундах, как в первом примере, а в микросекундах.
Антенна большинства радиолокационных станций имеет форму вогнутого прожекторного зеркала. Для уменьшения веса ее делают не из сплошных металлических листов, а решетчатой или из сетки. Такая антенна посылает радиоволны не во все стороны, как радиовещательная станция, а узким лучом, подобно прожекторного зеркала.
Направление радиолуча можно изменять по желанию: поворачивая антенну вверх или вниз, вправо или влево.
Если электромагнитный сигнал не встретит на своем пути препятствия, то он уйдет в космическое пространство и там исчезнет. Если же встретится какой-либо предмет - корабль, самолет, скала или айсберг, радиолуч отразится от него и пойдет обратно. Далее отраженный сигнал улавливается специальным приемником.
Следовательно, направление на цель с помощью радиолокатора определяется довольно легко. Цель, например корабль или самолет, находится там, откуда вернулось эхо.
Указателем направления служит зеркало антенны. Оно «смотрит» точно на цель. Если цель движется, то оператор станции, поворачивая антенну или изменяя ее наклон, может неотступно следить за нею, как следят за самолетом прожектористы, когда его удается «поймать» лучом прожектора.
Радиолокатор, как и летучая мышь, посылает свои сигналы отдельными, отрывистыми импульсами. Импульсный сигнал должен быть очень мощным, чтобы вообще можно было уловить его слабое эхо.
Длительность каждого импульса составляет несколько миллионных долей секунды. Передатчик обязан прерывать работу, чтобы приемник в паузах мог улавливать эхо, вернувшееся от цели. Здесь заложен такой принцип: «рот» молчит, когда «уши» слушают. Кроме того, когда передатчик излучает радиоимпульс, приемник должен быть закрыт для приема сигнала. В противном случае он «оглохнет» и перестанет работать.
Ученых давно интересовал такой вопрос: как летучие мыши ухитряются расслышать сравнительно негромкое эхо в том оглушительном ультразвуковом сигнале, который сами же излучают? Как им удается не оглохнуть?
Поиском ответа на этот вопрос занялся доктор О. Хенсон — анатом Уэльского университета. Ему удалось доказать правоту своего предположения, высказанного лет сорок назад. Оказалось, что у летучих мышей есть мышцы, закрывающие уши в момент излучения разведывательных ультразвуковых криков. Точно такое же устройство имеется в радиолокаторе. Когда его передатчик излучает импульс огромной мощности, приемник надежно заперт электронным устройством.
В первых радиолокаторах «рот» и «уши» — передающая и приемная антенны — помещались вдали друг от друга. Но так как передатчик и приемник все равно не могут работать одновременно, то такое разделение оказалось бесполезным. Теперь одна и та же антенна поочередно обслуживает то передатчик, то приемник.
Время, которое потратит радиосигнал на путешествие до цели и обратно, измеряет прибор, который называется индикатором радиолокационного изображения. Внешне он похож на обычный школьный осциллограф. По его экрану то и дело слева направо пробегает зеленый «зайчик», оставляя в виде следа светящуюся прямую линию.
В момент посылки станцией радиосигнала световой луч получает боковой толчок. От этого толчка светящаяся линия на экране подскакивает, образуя зигзаг. Такой же толчок получит луч в момент возвращения радиоэха. Светящаяся линия опять подскочит, образуя новый зигзаг. Расстояние между двумя зигзагами на линии, прочерченной электронным лучом, дает возможность определить расстояние до вражеского корабля или самолета. При этом никаких сложных вычислений делать не приходится. На экран заранее накладывается шкала с километровыми отметками.
Теперь грузовой или пассажирский пароход идет в туманной мгле или ночью так же уверенно, как и в ясный солнечный день. Радиолокатор заранее предупреждает капитана о приближении встречного судна или айсберга, в тумане пересекающего путь кораблю. Штурман больше не сетует на облака, скрывающие от него солнце и звезды, мешающие ориентироваться. Он так же уверенно чувствует себя при отсутствии видимости, как и летучая мышь ночью.
Для кибернетики и летучая мышь, и радиолокационная станция — это машины. А объединяет их тот обратный сигнал, который в том и в другом случае несет информацию о расстоянии до препятствия.
Эхолокатор
Всем удобен эхолокатор «Редут-0001», но вот беда — слишком мал радиус действия. Уметь определять препятствия на расстоянии до одного метра часто оказывается недостаточным.
Хорошо установить звуковой локатор на катер и отправиться с товарищами в длительное путешествие. Никакой туман не страшен, и можно уверенно плыть в темноте. Но для этого нужно, чтобы прибор определял дистанцию до препятствия на расстоянии 4—5 м так же уверенно, как и на одном метре.
На рисунке (см. приложения) в самом верху приведена временная диаграмма импульсных посылок летучей мыши. Там же дана формула, связывающая частоту посылок с расстоянием до препятствия.
В справедливости формулы можно убедиться, сравнивая экспериментальные данные, полученные американским ученым Дональдом Гриффином, с расчетными. Зоолог был далек от рассмотрения летучей мыши как машины с обратной связью и потому допустил неточность. Отсутствие кибернетического подхода при рассмотрении механизма работы живого локатора не дало ему возможности усмотреть имеющуюся закономерность. А то, что такая связь существует, видно из таблицы. Для расстояний 1,5 и 4 м экспериментальные и расчетные данные почти сходятся (см. приложения, таблица 1).
Человеку есть чему поучиться у летучей мыши
Пещеры служат убежищем иногда для нескольких тысяч и даже миллионов летучих мышей. Известно, что в Бракенской пещере, расположенной на юге США, обитает свыше 20 миллионов летучих мышей.
Каждый вечер это огромное количество зверьков покидает свое убежище, чтобы снова вернуться в него утром. При этом мыши, как правило, не сталкиваются и не мешают друг другу. Можно только удивляться совершенству их приемного аппарата, как при такой сложной звуковой какофонии каждая мышь безошибочно выделяет и принимает эхо именно принадлежащего ей сигнала.
Сейчас, когда в эфире работает столько радиостанций, порой мешающих друг другу, отличные «мышиные» принципы селекции собственных звуков привлекают внимание радиофизиков и инженеров.
Принцип действия модели звукового локатора
Создавая модель звукового локатора, мы также воспользовались решениями, используемыми летучей мышью. Блок-схема аппаратуры, данная на рисунке (см. приложения, рисунок 10), поможет разобраться в ее работе.
Всего в аппаратуре четыре «черных ящика», плюс громкоговоритель, микрофон и частотомер со стрелочным прибором. Назначение усилителей не требует пояснений — они усиливают сигнал. Звуковой генератор — это прибор, вырабатывающий сигнал определенной частоты. В разбираемой схеме частота равна 5000 Гц. Детектор выделяет из звукового импульса его огибающую. Частотомер измеряет частоту сигнала. По показаниям стрелочного прибора можно определять расстояние до препятствия, поскольку оно однозначно связано с частотой генерации.
Работает схема так. Сразу же после включения аппаратуры начинает действовать звуковой генератор. Но мощность его выходного сигнала, к сожалению, невелика.
Поэтому между звуковым генератором и громкоговорителем поставлен усилитель мощности. В результате громкоговоритель будет издавать довольно громкий звук с частотою 5000 Гц.
По прошествии некоторого времени эхо от посланного сигнала попадет на микрофон. Далее оно усилится усилителем сигнала и поступит на детектор. Как только на выходе детектора появится сигнал огибающей, он тут же заставит замолчать звуковой генератор. Так специально устроена схема. Пока на выходе детектора имеется какое-то напряжение, звуковой генератор не работает. Значит, работал генератор ровно столько, сколько времени потребовалось, чтобы сигнал от громкоговорителя дошел до микрофона. Столько же времени после этого громкоговоритель будет молчать.
Рассмотренный цикл, состоящий из звукового импульса и паузы, будет повторяться через каждые Т с. В результате схема будет генерировать звуковые посылки с частотой :
Остается измерить частоту генерации и перевести ее в расстояние до препятствия. Эту задачу решает частотомер. Расстояние до препятствия равно:
где с — скорость звука в метрах за секунду, f — частота генерации в герцах.
Вот так работает мой звуковой локатор. Примерно так же работает и локатор летучей мыши.
Как и большинство кибернетических конструкций, описываемых в книге, модель звукового локатора разбита на самостоятельные платы. Всего плат три: плата усилителя сигнала, плата усилителя мощности и плата звукового генератора совместно с детектором. Начинать нужно с их изготовления и наладки. Тогда сборка всей аппаратуры не займет у вас много времени и локатор непременно сразу же заработает. При такой последовательности в работе вы не только глубже поймете функционирование каждого «черного ящика», но и сможете внести усовершенствования в блок-схему. Схема частотомера настолько проста, что монтируется она вся на небольшой панельке, укрепленной сзади стрелочного прибора.
Усилитель сигнала
Электрическая схема дана на рисунке 11 (см. приложения). Это трехкаскадный усилитель с коэффициентом усиления около 1000. Он одинаково хорошо усиливает переменное напряжение звуковой частоты в пределах от 100 Гц до 10 кГц. В радиоэлектронике в таком случае говорят, что усилитель имеет линейную частотную характеристику в пределах от 100 Гц до 10 кГц.
Схема усилителя интересна для нас еще тем, что она имеет четыре отрицательных обратных связи. На три каскада — четыре обратных связи! Не слишком ли много?
Поскольку все обратные связи отрицательные, то от усилителя можно ожидать стабильной работы. Как бы ни менялись внешние условия, включая температуру и питающее напряжение или параметры отдельных деталей, его основные характеристики будут оставаться неизменными. Это прежде всего относится к коэффициенту усиления.
Отрицательная обратная связь всячески старается свести к нулю любое первоначальное возбуждение схемы и тем самым стабилизирует ее работу. Другое дело положительная обратная связь. Достаточно незначительного отклонения от состояния равновесия, как оно будет все возрастать и возрастать, пока система не придет в другое, новое для нее состояние.
Чтобы пояснить стабилизирующее действие отрицательной обратной связи и дестабилизирующее действие положительной обратной связи, на рисунке 12 (см. приложения) приведены два примера из механики. Левый рисунок эквивалентен устойчивой системе, охваченной отрицательной обратной связью. Если по каким-либо причинам шарик отклонится от состояния равновесия, то после нескольких покачиваний он обязательно все же снова его займет. Что касается правого рисунка, то без пояснения понятно, что в этом случае положение шарика крайне неустойчиво. Он обязательно скатится вправо или влево. Этот случай эквивалентен поведению схемы с положительной обратной связью.
К примерам с шариками мы еще не раз вернемся. Более наглядно, пожалуй, и не расскажешь, что такое устойчивая система и как ведет себя неустойчивая система.
Под рисунками с шариком даны четыре электрические схемы. Три из них — различные усилители с отрицательной обратной связью. Четвертая схема представляет генератор звуковых частот. Эта схема охвачена положительной обратной связью.
Рассмотрение начнем со схемы «а». Это обычный однокаскадный усилитель с обратной связью в цепи эмиттера. Один такой каскад обеспечивает усиление сигнала в 50 — 100 раз.
Для чего понадобилось усложнять схему и включать резистор Rэ, а параллельно ему еще конденсатор Сэ?
Больше всего неприятностей при работе транзистора доставляет зависимость обратного тока коллектора Iк.о. от температуры. При повышении температуры обратный ток транзистора увеличивается примерно в два раза на каждые 10°С. Если, например, при температуре 20°С ток 1К.0 составляет 5 мкА, то при повышении температуры до 50° С он возрастет примерно до 40 мкА. Само по себе такое изменение тока коллектора (всего на 35 мкА) в большинстве случаев было бы не страшно. Но имеется одно «но», которое портит все дело. При включении транзистора в схему «а» в цепи коллектора, помимо тока, равного 10-Д будет протекать так называемый сквозной ток I’к.о.:
I’к.о.= Iк.о·(b+1),
где b — коэффициент усиления транзистора, а Iб — ток базы, определяемый резистором R6.
Из формулы следует, что увеличение тока Iк.о на величину DIк.о =35 мкА будет соответствовать, например при b = 49, увеличению тока коллектора на величину:
DI’к.о.» Iк.о·(b+1)=35(49+1)=1,75мА.
Обратный ток коллектора возрос на 35 мкА, а общий ток — на 1,75 мА. С таким током уже нельзя не считаться.
Возрастание тока коллектора нежелательно по двум причинам. Во-первых, оно приведет к увеличению падения напряжения на резисторе Rэ-Напряжение между коллектором и эмиттером транзистора при этом резко уменьшится и может упасть почти до нуля. Во-вторых, увеличение тока коллектора влечет за собой изменение параметров транзистора и в первую очередь коэффициента усиления b.
Обе разобранные причины и заставили нас прибегнуть к усложнению схемы, чтобы повысить стабильность рабочего коллекторного тока при изменении температуры. Вот как теперь она работает.
Увеличение сквозного тока коллектора DI’к.о (см. приложения, рисунок 12 «а») при повышении температуры приведет к увеличению падения напряжения на резисторе Кэ. Вследствие этого напряжение между точками 1 и 2 уменьшится, что приведет к уменьшению тока Iб в резисторе Rб , а также и в базе транзистора. Составляющая тока коллектора IK= Iбb при этом уменьшится. Зная, что полный ток коллектора Iк состоит из двух составляющих
Iк=I’к.о.+Iб·b
можно сделать такой вывод: температурные изменения первого слагаемого (I’к.о) приведут к обратным по знаку изменениям второго слагаемого (Iб·b). При правильном выборе параметров схемы оба слагаемых в некоторой мере компенсируют друг друга так, что коллекторный ток транзистора при этом остается неизменным.
Усилитель — это, пожалуй, самый простой «черный ящик». К тому же он чаще других встречается в кибернетических конструкциях.
Нигде обратная связь так широко не используется, как в радиоэлектронике.
Каждый из двух каскадов схемы «б» (см. приложения, рисунок 12) работает точно так же, как схема «а». Их работа стабилизируется отрицательной обратной связью за счет резисторов Rэ1 и Rэ2- Но этого оказалось недостаточно. За счет резистора Ro.c оба каскада охвачены еще третьей обратной связью. Разберем, как она работает.
Допустим, по каким-либо причинам, включая повышение температуры, несколько возрос коллекторный ток транзистора T1.Тут же уменьшится напряжение между коллектором первого транзистора и общим проводом, и как следствие упадет ток базы второго транзистора. При этом коллекторный ток Т2 также уменьшится, что повлечет уменьшение падения напряжения на резисторе Rэ2. Поскольку ток базы транзистора T1 в основном определяется этим напряжением, то он также уменьшится.
Кольцо обратной связи замкнулось, в результате чего коллекторный ток первого транзистора восстановит свое прежнее значение. В схеме «б» мы имеем дело с отрицательной обратной связью. Устойчивость работы схемы обеспечена.
За счет отрицательной обратной связи, охватывающей оба каскада Ro.c, схема «б» стабильно работает при изменении окружающей температуры от -10°С до +40°С. Общий коэффициент усиления равен 1000. По той же причине входное сопротивление усилителя повысилось с 500—1000 Ом до 1,5—2,0 кОм.
Кольцо обратной связи замкнулось, в результате чего коллекторный ток первого транзистора восстановит свое прежнее значение. В схеме «б» мы имеем дело с отрицательной обратной связью. Устойчивость работы схемы обеспечена.
За счет отрицательной обратной связи, охватывающей оба каскада Ro.c, схема «б» стабильно работает при изменении окружающей температуры от — 10°С до +40°С. Общий коэффициент усиления равен 1000. По той же причине входное сопротивление усилителя повысилось с 500—1000 Ом до 1,5—2,0 кОм.
Режим работы второго транзистора выбирается из условия, чтобы напряжение ме
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Значение топливно-энергетического комплекса
СОДЕРЖАНИЕВВЕДЕНИЕ……………………………………………………………….31 Значение топливно-энергетического комплекса (ТЭК)в мировом хозяйстве………
- Зонная теория твердых тел
Зонная теория твердых тел1. Металлы, хорошо проводят электрический ток.Диэлектрики (изоляторы) плохо проводят ток.Электропроводность ме
- Измерение длины волны излучения лазера интерференционным методом
Цель работы: ознакомиться с принципами работы лазеров; измерить длину волны излучения лазера и сравнить спектры его индуцированного и с
- Изучение гидравлики как теоретической дисциплины
Гидравлика представляет собой теоретическую дисциплину, изучающую вопросы, связанные с механическим движением жидкости в различных пр
- Изучение особенностей электрических свойств магнитных жидкостей
Магнитные жидкости, синтезированные в середине 20-го века на стыке наук коллоидной химии, физики магнитных явлений и гидродинамики, отно
- Инвариантность физических законов
Инвариантность физических законовВ последние два столетия в науке происходило бурное размежевание научных дисциплин. В физике помимо
- Индукционная плавка металла
Федеральное агентство по образованиюЮжно-Уральский государственный университетКафедра общей и теоретической физикиРефератна тему:«И