Скачать

Електроніка та мікропроцесорна техніка

Інструкційна картка №1для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 1 Фізичні властивості електроніки

1.1 Основи електронної теорії

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Що називається роботою виходу електрону;

- Як визначається робота виходу;

- Види електронної емісії;

- Рух електрона в однорідному електричному полі;

- Рух електрона в однорідному магнітному полі.

ІІІ. Студент повинен уміти:

- Виконувати розрахунки роботи виходу;

- Відрізняти види електронної емісії;

- Використовувати рух електронів в електричному і магнітному полях.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: (3, с. 7-8), (4, с. 5-12).

VІ. Запитання для самостійного опрацювання:

1. Робота виходу електронів.

2. Види електронної емісії.

3. Рух електронів в електричному і магнітному полях.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що таке робота виходу електронів, що вона характеризує?

2. Що таке термоелектронна, фотоелектронна, електростатична та вторинна електронна емісія?

3. В чому полягає суть фізичних процесів руху електрона в однорідному електричному та магнітному полях?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.


Теоретична частина: Основи електронної теорії

План:

1. Робота виходу електронів.

2. Види електронної емісії.

3. Рух електронів в електричному і магнітному полях.

Література

1. Робота виходу електронів

Принцип дії електронних приладів заснований на явищі електронної емісії - процесі виходу електронів з поверхні твердого тіла у вакуум.

Як відомо, вільні електрони в провідних матеріалах знаходяться в безперервному хаотичному русі. За звичайних умов електрони не можуть вийти за межі поверхні тіл, оскільки цьому перешкоджають електричні сили взаємодії електрона з тілом. Щоб електрон вилетів за межі металу, він повинен володіти енергією, достатньою для подолання сил, що утримують його в металі. Внутрішній енергії електрона для цього недостатньо. Тому йому потрібно надати додаткову енергію ззовні. Найменша додаткова енергія, яку необхідно надати електрону ззовні для подолання сил, що утримують його в металі, називається роботою виходу і позначається W0. Вона вимірюється в електронвольтах. Робота виходу є однією з основних характеристик електронної емісії. Чим менше W0, тим краще емісійні властивості матеріалу. Значення роботи виходу для різних металів, використовуваних в електронних приладах, коливається в межах від 1,8 еВ для цезію до 4,5 еВ для вольфраму.

Залежно від виду додаткової енергії, використовуваної для того, щоб електрони могли зробити роботу виходу, розрізняють декілька видів електронної емісії: термоелектронну, фотоелектронну, вторинну і електростатичну.


2. Види електронної емісії

Термоелектронною емісією називається процес випромінювання електронів з поверхні нагрітого металу. Цей вид електронної емісії широко використовується в електровакуумних і деяких іонних приладах. При нагріванні металу електрони отримують додаткову енергію, швидкість електронів, а отже, їх кінетична енергія зростає, і деяке число електронів долає сили, що перешкоджають їх виходу з металу в зовнішній простір. Чим вище температура і менше робота виходу металу, тим більше число електронів володітиме енергією, достатньою для подолання сил, що перешкоджають виходу електронів з металу.

Фотоелектронною емісією називається процес виходу електронів з поверхні металу, що опромінюється променистою енергією. Явище фотоелектронній емісії носить назва зовнішнього фотоефекту. За рахунок поглиненої енергії світлового потоку збільшується енергія електронів в металі. При цьому електрони, що отримали енергію, достатню для здійснення роботи виходу, вилітають за межі металу, створюючи потік вільних електронів.

Фотоелектронна емісія може виникати при опромінюванні металу променями видимого спектру, інфрачервоними, ультрафіолетовими і рентгенівськими. Цей вид емісії використовується у фотоелементах, фотопомножувачах і в телевізійних трубках.

Вторинна електронна емісія - це емісія електронів з поверхні металу при опромінюванні його потоком електронів. Якщо електрони, рухомі з великою швидкістю, ударяються об поверхню металу, то їх кінетична енергія руху передається електронам металу. Електрони, що отримали необхідну додаткову енергію, вилітають з поверхні металу. При цьому електрони, падаючі на поверхню металу, називаються первинними, а що вилітають з металу - вторинними.

Струм вторинної емісії залежить від властивостей металу, стану його поверхні, швидкості і кута падіння первинних електронів. Кількісно вторинна емісія оцінюється коефіцієнтом вторинної емісії а, рівним відношенню кількості вторинних електронів n2 до кількості первинних електронів n1 Цей вид емісії використовується в електронних помножувачах і деяких спеціальних радіолампах. У деяких лампах вторинна емісія порушує нормальну їх роботу.

Електростатична (автоелектронна) емісія – це емісія електронів з поверхні металу (холодного) під дією сильного прискорюючого електричного поля (106-108 В/см). Дія зовнішнього електричного поля еквівалентна зменшенню роботи виходу електрона. Під дією цього поля відбувається як би виривання електронів з металу. Цей вид емісії використовується в рентгенівських трубках, а також в деяких, газорозрядних і напівпровідникових приладах.

3. Рух електронів в електричному і магнітному полях

Рух електрона в однорідному електричному полі

У електронних приладах рух вільних електронів відбувається під дією електричних або магнітних полів. Залежно від напряму початкової швидкості електрона електричне поле може його рух прискорювати, гальмувати або змінювати напрям.

Для з'ясування фізичних процесів розглянемо рух електрона в однорідному електричному полі. Уявимо собі, що в балоні, в якому створений вакуум, розташовані два взаємно паралельних електроду - катод К і анод А (мал. 1.1, а).


Мал. 1.1

Якщо до цих електродів приєднати батарею з напругою плюсом до анода і мінусом до катода, то в просторі між анодом і катодом буде створено електричне поле з напруженістю

де U - різницяпотенціалів, d - відстаньміж електродами.

Якщо в електричне поле з напруженістю Е помістити електрон, заряд якого рівний е, то на нього діятиме сила електричного поля, рівна добутку заряду на напруженість поля:

Сила електричного поля направлена від катода до анода.

Якщо початкова швидкість електрона рівна нулю і співпадає з напрямом сили електричного поля, то електрон, поміщений в дане поле, зазнає прискорення і переміщатиметься з точок з меншим потенціалом до точок з вищим потенціалом. При цьому швидкість електрона і його кінетична енергія зростатимуть. Рух електрона буде рівномірно прискореним, тому таке поле називають прискорюючим.

На підставі закону збереження енергії приріст кінетичної енергії електрона повинен дорівнювати роботі, яку здійснює електричне поле при переміщенні електрона, тобто

де m - маса електрона; υн, υ - початкова і кінцева швидкості електрона; U=U2 – U1 - різниця потенціалів, пройдена електроном, в електричному полі.

Якщо початкова швидкість електрона рівна нулю, то електрон рухатиметься тільки під дією сили поля. В цьому випадку кінетична енергія електрона визначається виразом

З (1.4) можна визначити швидкість електрона в кінці його шляху

Підставляючи е/т= 1,759·1011 К/кг, отримаємо вираз для швидкості електрона при русі його в прискорюючому електричному полі:

З (1.6) витікає, що швидкість руху електрона умовно можна виражати не тільки в км/с, але і у В.

Для визначення часу прольоту електрона в однорідному прискорюючому полі виразимо силу електричного поля через масу і прискорення:

Звідси

Шлях, пройдений електроном за час t, можна визначити з виразу d=at2/2, сюди підставимо значення з (1.7), отримаємо

звідки

Підставивши в отриманий вираз значення m і е, отримаємо формулу для визначення часу прольоту електрона:

Час прольоту t дуже малий, в багатьох практичних електронних пристроях не враховується, звідси електронну лампу можна вважати безінерційним приладом.

Якщо під дією початкової швидкості електрон рухається уздовж напряму ліній поля (від точок з великим потенціалом до точок з меншим потенціалом), то він здійснює роботу проти сил поля, при цьому його швидкість і запас кінетичної енергії зменшуються і він рухається прямолінійно і рівносповільнено. Поле, в якому електрон здійснює рівносповільнений рух, називають гальмуючим.

При повній втраті кінетичної енергії швидкість електрона впаде до нуля і він під дією сили поля рухатиметься рівноприскорено у зворотному напрямі, набуваючи втраченої кінетичної енергії.

Коли вектор початкової швидкості електрона перпендикулярний напряму дії сили електричного поля (мал. 1.1,6), траєкторія руху електрона матиме вид параболи. Таке поле називають поперечним.

Рух електрона в однорідному магнітному полі

У ряді електронних приладів управління траєкторією руху електронів здійснюється за допомогою сил магнітного поля. Дія магнітного поля на електрон аналогічно дії магнітного поля на провідник із струмом.

Сила, з якою діє магнітне поле на провідник із струмом, визначається виразом

де F - механічнасила, що діє на провідник завдовжки l; В - магнітна індукція; i - електричний струм в провіднику; α - кут між напрямом струму в провіднику і напрямом силових ліній магнітного поля.

Мал. 1.2 Мал. 1.3

Якщо струм для одного електрона рівний i=e/t і в даному виразі чисельник і знаменник помножити на швидкість руху електрона v, то (1.9) можна представити у вигляді F=Bev sinα.

Аналізуючи отриманий вираз, можна зробити наступний висновок, що на нерухомий електрон і електрон, що переміщається уздовж ліній поля, магнітне поле не діє. Сила магнітного поля на рухомий електрон буде максимальною, коли він переміщається перпендикулярно напряму сил магнітного поля Fmax = Bev. Напрям цієї сили визначається за правилом лівої руки. Сила F завжди перпендикулярна напряму швидкості електрона (мал. 1.2). Тому магнітне поле не змінює швидкості електрона, а змінює його напрям.

Якщо електрон входить в однорідне магнітне поле під кутом 90° до силових ліній, то він рухатиметься по колу, лежачому в площині, перпендикулярній лініям поля (мал. 1.2). Коли кут α не рівний 90°, то швидкість електрона може бути розкладена на дві складові vHі v (мал. 1.3).

Перша складова швидкості vHперпендикулярна напряму сил поля і примусить електрон обертатися по колу. Друга складова швидкості електрона направлена уздовж сил магнітного поля і тому з ним не взаємодіє. В результаті дії два складових електрон переміщатиметься по спіралі.

Таким чином, магнітне поле не змінює енергії рухомого електрона, а змінює тільки траєкторію його руху. Це властивість магнітного поля використовується в електронно-променевих трубках і інших електронних приладах.

Контрольні запитання:

1. Що таке робота виходу електронів, що вона характеризує?

2. Що таке термоелектронна,фотоелектронна, електростатична та вторинна електронна емісія?

3. В чому полягає суть фізичних процесів руху електрона в однорідному електричному та магнітному полях?

Інструкційна картка №2 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 1 Фізичні властивості електроніки

1.2 Електрофізичні властивості напівпровідників

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Види пробою;

- Температурні і частотні характеристики переходу;

- Еквівалентну схему р-п-переходу;

- Способи створення р-п-переходу.

ІІІ. Студент повинен уміти:

- Перевіряти справність р-п-переходу;

- Використовувати основні властивості р-п-переходу.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: (2, с. 50-61).

VІ. Запитання для самостійного опрацювання:

1. Вольт-амперна характеристика р-п-переходу

2. Температурні і частотні характеристики переходу. Еквівалентна схема р-п-переходу

3. Створення р-п-переходу

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що таке р-n-перехід та як він створюється?

2. Що собою являє вольт-амперна характеристика р-n-переходу?

3. Що таке пробій переходу, види пробою?

4. Як впливає температура на характеристики р-n-переходу?

5. Як залежать властивості р-п переходу від частоти прикладеної напруги?

6. Що таке еквівалентна схема p-n переходу?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І. В


Теоретична частина: Електрофізичні властивості напівпровідників

План:

1. Вольт-амперна характеристика р-п-переходу

2. Температурні і частотні характеристики переходу. Еквівалентна схема р-п-переходу

3. Створення р-п-переходу

Література

1. Вольт-амперна характеристика р-п-переходу

Властивості електронно-діркового переходу наочно ілюструються його вольтамперною характеристикою (мал. 3.8, а), що показує залежність струму через р-п перехід від величини і полярності прикладеної напруги.

Мал. 3.8. Характеристики р-п переходу: а - вольтамперна; б - опору

Розрізняють два види пробою: електричний (оборотний) і тепловий (необоротний).

Електричний пробій відбувається в результаті внутрішньої електростатичної емісії (зінеровський пробій) і під дією ударної іонізації атомів напівпровідника (лавинний пробій).

Внутрішня електростатична емісія в напівпровідниках аналогічна електростатичній емісії електронів з металу. Суть цього явища полягає в тому, що під дією сильного електричного поля електрони можуть звільнитися від ковалентних зв'язків і отримати енергію, достатню для подолання високого потенційного бар'єру в області р-п переходу. Рухаючись з більшою швидкістю на ділянці р-п переходу, електрони стикаються з нейтральними атомами і іонізують їх. В результаті такої ударної іонізації з'являються нові вільні електрони і дірки, які, у свою чергу, розганяються полем і створюють зростаючу кількість носіїв струму. Описаний процес носить лавиноподібний характер і приводить до значного збільшення зворотного струму через р-п перехід. Таким чином, надмірно збільшувати зворотну напругу не можна. Якщо вона перевищить максимально допустиму для даного р-п переходу величину, то ділянка р-п переходу проб'ється, а р-п перехід втратить властивість односторонньої провідності (тепловою пробою).

Тепловий пробій р-п переходу відбувається унаслідок відривання валентних електронів із зв'язків в атомах при теплових коливаннях кристалічної решітки. Теплова генерація пар електрон-дірка приводить до збільшення концентрації неосновних носіїв заряду і до зростання зворотного струму. Збільшення струму, у свою чергу, приводить до подальшого підвищення температури. Процес наростає лавиноподібно.

Електричний і тепловий пробої р-п переходу у багатьох випадках відбуваються одночасно. При надмірному розігріванні переходу, коли відбувається зміна структури кристала, перехід необоротно виходить з ладу. Якщо ж при виникненні пробою струм через р-п перехід обмежений опором зовнішньому ланцюгу і потужність, що виділяється на переході, невелика, то пробій обернений. В цьому випадку можна управляти зворотним струмом шляхом зміни зовнішньої напруги, що підводиться до переходу.

Аналіз вольтамперної характеристики р-п переходу дозволяє розглядати його як нелінійний елемент, опір якого змінюється залежно від величини і полярності прикладеної напруги (мал. 3.8, б). При збільшенні прямої напруги опір р-п переходу зменшується. Із зміною полярності і величини прикладеної напруги опір р-п переходу різко зростає. Отже, пряма (лінійна) залежність між напругою і струмом (закон Ома) для р-п переходів не дотримується. Нелінійні властивості р-п переходів лежать в основі роботи напівпровідникових приладів, що використовуються для випрямляння змінного струму, перетворення частоти, обмеження амплітуд і т.д.

2. Температурні і частотні характеристики переходу. Еквівалентна схема р-п-переходу

Температурні і частотні властивості р-п переходу

Властивості р-п переходу істотно залежать від температури навколишнього середовища. При підвищенні температури зростає генерація пар носіїв заряду - електронів і дірок, тобто збільшується концентрація неосновних носіїв і власна провідність напівпровідника. Це наочно показують вольтамперні характеристики германієвого р-п переходу, зняті при різній температурі (мал. 3.9). Як видно з малюнка, при підвищенні температури прямий і зворотний струми ростуть, а р-п перехід втрачає своя основна властивість - односторонню провідність.

Залежність від температури зворотної гілки вольтамперної характеристики визначається температурними змінами струму насичення. Цей струм пропорційний рівноважній концентрації неосновних носіїв заряду, яка із збільшенням температури зростає по експоненціальному закону.

Для германієвих і кремнієвих р-п переходів зворотний струм зростає приблизно в 2-2,5 разу при підвищенні температури на кожні 10 °С.


Мал. 3.9. Вплив температури на вольтамперну характеристику р-п переходу

Прямий струм р-п переходу при нагріві зростає не так сильно, як зворотний струм. Це пояснюється тим, що прямий струм виникає в основному за рахунок домішкової провідності. Але концентрація домішок від температури практично не залежить. Температурна залежність прямої гілки вольтамперної характеристики визначається змінами струму і показника експоненти.

Для германієвих приладів верхня температурна межа 70...90°С. У кремнієвих приладів унаслідок більшої енергії, необхідної для відриву валентного електрона від ядра атома, ця межа вища: 120... 150°С.

Властивості р-п переходу залежать також від частоти прикладеної напруги. Це пояснюється наявністю власної ємності між шарами напівпровідника з різними типами провідності.

При зворотній напрузі, прикладеній до р-п переходу, носії зарядів обох знаків знаходяться по обидві сторони переходу, а в області самого переходу їх дуже мало. Таким чином, в режимі зворотної напруги р-п перехід є ємність, величина якої пропорційна площі р-п переходу, концентрації носіїв заряду і діелектричної проникності матеріалу напівпровідника. Цю ємність називають бар'єрною. При малій зворотній напрузі, прикладеній до р-п переходу, носії зарядів протилежних знаків знаходяться на невеликій відстані один від одного. При цьому власна ємність р-п переходу велика. При збільшенні зворотної напруги електрони все далі відходять від дірок по обидві сторони від р-п переходу і ємність р-п переходу зменшується. Отже, р-п перехід можна використовувати як ємність, керовану величиною зворотної напруги.

При прямій напрузі р-п перехід, окрім бар'єрної ємності, володіє так званою дифузійною ємністю. Ця ємність обумовлена накопиченням рухомих носіїв заряду. При прямій напрузі в результаті інжекції основні носії заряду у великій кількості дифундують через знижений потенційний бар'єр і, не встигнувши рекомбінувати, накопичуються в n- і р-областях. Кожному значенню прямої напруги відповідає певна величина заряду накопиченого в області р-п переходу.

Мал. 3.10. Еквівалентна схема p-n переходу

Дифузійна ємність не робить істотного впливу на роботу р-п переходу, оскільки вона завжди зашунтована малим прямим опором переходу. Найбільше практичне значення має бар'єрна ємність. У зв'язку з цим еквівалентна схема р-п переходу (схема заміщення) для змінного струму має вигляд, показаний на мал. 3.10. При зворотній напрузі дифузійна ємність відсутня і має дуже велику величину. При роботі на високих частотах опір ємності зменшується, і зворотний струм може пройти через цю ємність, не дивлячись на велику величину опору. Це порушує нормальну роботу приладу, оскільки р-п перехід втрачає властивість односторонньої провідності. Тому для роботи на високих частотах використовуються в основному точкові напівпровідникові прилади, у яких площа р-п переходу незначна і власна ємність мала.

В даний час є напівпровідникові прилади, що успішно працюють в дуже широкому діапазоні частот - до сотень мегагерц і вище.

3. Створення р-п-переходу

Всі електричні контакти можна розділити на три основні групи: омічні, нелінійні і інжекторні. Залежно від призначення контакту до нього пред'являються різні вимоги. Так, омічний контакт повинен володіти дуже малим перехідним опором, не спотворювати форму сигналу, не створювати шумів, мати лінійну вольтамперну характеристику. Подібні контакти необхідні для з'єднання елементів схеми один з одним, з джерелами живлення і т.д.

Нелінійні контакти використовуються для перетворення електричних сигналів (випрямляння, детектування, генерування і т. п.). Вони мають різко нелінійну вольтамперну характеристику, форма якої визначається конкретним призначенням відповідного приладу. Інжектуючі контакти володіють здатністю направляти носії зарядів тільки в один бік. Цей тип контактів широко використовується в напівпровідникових приладах, наприклад, в біполярних транзисторах .

Найбільшого поширення в напівпровідниковій техніці і мікроелектроніці набули контакти типу напівпровідник - напівпровідник, а фізичні явища, що відбуваються в зоні цих контактів, лежать в основі роботи більшості напівпровідникових приладів.

Електричний перехід між двома областями напівпровідника, одна з яких має електропровідність п-типу, а інша р-типу, називають електронно-дірковим, або р-п переходом (мал. 3.1).

Електронно-дірковий перехід не можна створити простим зіткненням пластин п- і р-типу, оскільки при цьому неминучий проміжний шар повітря, оксидів або поверхневих забрудненні. Ці переходи отримують вплавленням або дифузією відповідних домішок в пластинки монокристала напівпровідника, а також шляхом вирощування р-п переходу з розплаву напівпровідника з регульованою кількістю домішок. Залежно від способу виготовлення р-п переходи бувають сплавними, дифузійними і ін.

Розглянемо явища, що виникають при електричному контакті між напівпровідниками п- і р-типу з однаковою концентрацією донорних і акцепторних домішок (мал. 3.2, а). Допустимо, що на межі розділу (перетин х0) тип домішок різко змінюється (мал. 3.2, б).

Існування електронно-дірковогопереходу обумовлене відмінністю в концентрації рухомих носіїв заряду електронної і дірчастої областей.

Мал. 3.1. Електронно-дірковий перехід

Унаслідок того що концентрація електронів в n-області вища, ніж в р-області, а концентрація дірок в р-області вища, ніж в п -області, на межі цих областей існує градієнт концентрацій носіїв, що викликає дифузійний струм електронів з n-області в р-область і дифузійний струм дірок з р-області в n-область (потік 2 на мал. 3.2, а). Окрім струму, обумовленого рухом основних носіїв заряду, через границю розділу напівпровідників можливий струм неосновних носіїв (електронів з р-області в n-область і дірок з n-області в р-область). Потоки неосновних носіїв на мал. 3.2, а позначені відповідно 3 і 4. Унаслідок істотної відмінності в концентраціях основних і неосновних носіїв струм, обумовлений основними носіями заряду, переважатиме над струмом неосновних носіїв. Якби електрони і дірки були нейтральними, то дифузія зрештою привела до повного вирівнювання їх концентрації за всім обсягом кристалі. На самій же справі дифузійні струми через р-п перехід не приводять до вирівнювання концентрації носіїв в обох частинах напівпровідника. З мал. 3.2, видно, що відхід електронів з при контактній n-області призводить до того, що їх концентрація тут зменшується і виникає некомпенсований позитивний заряд іонів донорної домішки. Так само в р-області унаслідок відходу дірок їх концентрація в приконтактному шарі знижується (мал. 3.2, в) і тут виникає негативний заряд іонів акцепторної домішки, що не компенсується. Таким чином, на межі областей n- і р-типу утворюються два шару протилежних по знаку зарядів. Область просторових зарядів, що утворилися, є р-n перехід. Його ширина зазвичай не перевищує десятих доль мікрометра.

Просторові заряди в переході утворюють електричне поле, направлене від позитивно заряджених іонів донорів до негативно заряджених іонів акцепторів. Схема утворення електричного поля в р-n переході показана на мал. 3.3, а і б. Це поле є гальмуючим для основних носіїв заряду і прискорюючим для неосновних. Тепер будь-який електрон, що проходить з електронної області в діркову, потрапляє в електричне поле, прагнучи повернути його назад в електронну область. Так само і дірки, потрапляючи з області р в електричне поле p-n переходу, будуть повернені цим полем назад в р-область.

Що ж до неосновних носіїв заряду, то вони, здійснюючи хаотичний тепловий рух (дрейфуючи), можуть потрапити в зону p-n переходу. В цьому випадку прискорююче поле переходу виштовхне їх за межі переходу.

На мал. 3.3, в показаний розподіл напруженості поля в p-n переході. Найбільша величина напруженості спостерігається в перетині х0, оскільки через цей перетин проходять всі силові лінії, що починаються на позитивних зарядах, розташованих лівіше х0. У міру видалення від х0 вліво кількість некомпенсованих позитивних зарядів зменшуватиметься, отже, і напруженість поля зменшуватиметься. Аналогічна картина спостерігається і при видаленні вправо від перетину х0. Якщо вважати, що поле створюється тільки зарядами донорів і акцепторів, то зменшення напруженості відбувається по лінійному закону.

Потенційна діаграма p-n переходу показана на мал. 3.3,г. За нульовий потенціал умовно прийнятий потенціал шару.. При переміщенні від х0 до перетину хп потенціал підвищується, а при переміщенні від х0 до хр - знижується. За межами переходу поле відсутнє. Перепад потенціалу в переході рівний контактній різниці потенціалів UK. Цей перепад зазвичай називають потенційним бар'єром, оскільки він перешкоджає переміщенню основних носіїв заряду.

Слід зазначити, що при кімнатній температурі деяка кількість основних носіїв зарядів в кожній з областей напівпровідника володіє енергією, достатньою для подолання потенційного бар'єру. Це призводить до того, що через p-n перехід дифундує незначна кількість електронів і дірок, утворюючи відповідно електронну і діркову складові дифузійного струму. Крім того, через р-п перехід безперешкодно проходять неосновні носії заряду, дірки з n-області і електрони з р-області, для яких електричне поле р-п переходу є прискорюючим. Ці заряди утворюють відповідно електронну і діркову складові дрейфового струму. Напрям дрейфового струму неосновних носіїв протилежний напряму дифузійного струму основних носіїв. Оскільки в ізольованому напівпровіднику щільність струму повинна бути рівна нулю, то врешті-решт встановлюється динамічна рівновага, коли дифузійний і дрейфовий потоки зарядів через р-п перехід компенсують один одного.

Контрольні запитання:

1. Що таке р-n-перехід та як він створюється?

2. Що собою являє вольт-амперна характеристика р-n-переходу?

3. Що таке пробій переходу, види пробою?

4. Як впливає температура на характеристики р-n-переходу?

5. Як залежать властивості р-п переходу від частоти прикладеної напруги?

6. Що таке еквівалентна схема p-n переходу?


Інструкційна картка №3 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.1 Пасивні елементи електроніки

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Призначення коливального контуру;

- Види коливальних контурів;

- Основні характеристики коливального контуру.

ІІІ. Студент повинен уміти:

- Викреслювати схеми коливальних контурів;

- Характеризувати схеми;

- Визначати основні параметри схеми.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: (5, с. 80-93).

VІ. Запитання для самостійного опрацювання:

1. Коливальні контури, їх використання

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що являє собою коливальний контур?

2. Область застосування коливального контуру?

3. Основні параметри коливального контуру?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І. В


Теоретична частина: Пасивні елементи електроніки

План:

1. Коливальні контури, їх використання

Література

1. Коливальні контури, їх використання

Коливальний контур (рис. 1-28, а) являє собою широко розповсюджений радіотехнічний пристрій, що складається з індуктивності L, ємності С і активного опору r. Слід зазначити, що активний опір звичайно намагаються зробити якомога меншим, але позбавитися його взагалі неможливо, оскільки провідник завжди має якийсь опір. Проте, оскільки опір r дуже й дуже малий, ним звичайно нехтують і на схемах не показують.

Коли конденсатор С коливального контура (рис. 1-28, б) спочатку підімкнути до джерела живлення Е, а після того як він зарядиться, перемкнути на котушку L, то конденсатор почне розряджатися і в колі утворюється електричний струм, утворюючи навколо котушки магнітне поле. Спочатку й струм, і магнітне поле збільшуються. При цьому силові лінії поля перетинають витки котушки, наводячи в ній є. р. с. самоіндукції, яка перешкоджає підсиленню струму. Однак струм все-таки досягає максимального значення, і в цей момент вже не змінюється, а де означає, що магнітне поле котушки виявляється постійним, магнітні силові лінії не перетинають її витків, отже, е. р.с. самоіндукції дорівнює нулю. У цей момент конденсатор розряджається повністю, запасена ним енергія, що визначається за формулою


дорівнюватиме нулю, цілком перетворившись на енергію магнітного поля котушки, що визначається як

Рис. 1-28. Вільні коливання в одиночному коливальному контурі:

а — коливальний контур; б — розряджання конденсатора; в — графік затухаючих коливань.

Проте напруженість магнітного поля стає максимальною.

Тепер вже струм (після точки 1 на графіку) поступово зменшується. Як тільки струм почне зменшуватись, магнітні силові лінії перетинають витки котушки й наводять е. р. с. самоіндукції протилежного напрямку, причому е. р. с. вже перешкоджає не зростанню, а зменшенню струму. Під дією енергії магнітного поля струм продовжує проходити в тому самому напрямку і зменшуватись, конденсатор перезаряджається, напруга на ньому, напрямлена проти е. р. с. котушки, підвищується. У деякий момент (точка 2 на рис. 1-28, в) струм у контурі дорівнюватиме нулю, а напруга на конденсаторі досягне максимального значення. Отже, розглядуваний контур прийде в початковий стан, і далі процес розвиватиметься, як вже було описано (тільки напрямок струму тепер буде протилежний) і т. д.

Таким чином, у розглядуваному контурі утворюються гармонічні електромагнітні коливання.

Важливо зазначити, що цей процес не є скінченним, оскільки частина енергії все-таки втрачається. Коливання поступово, як кажуть, затухають, про що свідчить і характер кривої на рис. 1-28, в. Енергія втрачається в активному опорі проводів, розсіюється магнітним полем котушки, витрачається в діелектрику конденсатора. Зрештою після ряду коливань процес припиняється. Подібні коливання називають ще вільними, через те що контур не зазнає ззовні ніяких дій (крім первинного заряду конденсатора).

Коли розглядати процеси в коливальному контурі з енергетичного погляду, то маємо справу з обміном енергією між конденсатором і котушкою. Енергія електричного поля конденсатора, яку можна вважати потенціальною (оскільки вона зумовлена нерухомими електричними зарядами), переходить в енергію магнітного поля котушки — кінетичну (через те що вона пов'язана з зарядами, що рухаються), і навпаки. В результаті кожного такого обміну частина енергії втрачається безповоротно, і процес зрештою припиняється.

Час, протягом якого здійснюється повний цикл обміну енергією (точка 3 на рис 1-28, в), називається періодом коливань. Якщо нехтувати активним опором r, то період коливання можна визначити за формулою

Число коливань за секунду називають частотою і знаходять за формулою

У радіотехнічних розрахунках зручніше користуватися круговою частотою, яка визначається як

Вимушені коливання в коливальному контурі

Коли коливальний контур піддати зовнішнім діям, наприклад, як це часто робиться на практиці, підімкнути до нього джерело змінної е. р. с. — генератор, то коливання її такому контурі вже не будуть вільними. Генератор як би нав'язує контуру спою частоту електричних коливань, і тому такі коливання називають вимушеними.

На рис. І-29,а зображено так званий послідовний коливальний контур, елементи якого з'єднані між собою послідовно.

Рис. 1-29. Послідовний коливальний контур (а) і графік залежності реактивних опорів від частоти (б).

Частоту генератора або значення L і С, можна зробити однаковими індуктивний і ємнісний опори. Тоді загальний опір контура виявиться найменшим z = r, а струм у контурі, природно, досягне максимального значення. Напруги на котушці і на конденсаторі дорівнюють одна одній, напрямлені протилежно і, отже, компенсують одна одну. Отже, струм визначається тільки активним опором і внутрішнім опором генератора. Цей режим дістав назву резонансу напруг.

Опір котушки і конденсатора при резонансі напруг називають хвильовим, тобто