Скачать

Двоично-ортогональные системы базисных функций

Широкое использование спектрально-частотного представления процессов при исследовании сигналов и систем (преобразование Фурье) связанно с тем, что при гармонических воздействиях колебания сохраняют свою форму при прохождении через линейные цепи (системы) и отличаются от входных только амплитудой и фазой. Это свойство используют ряд методов исследования систем (например, частотные методы).

Но при реализации алгоритмов, использующих преобразование Фурье на ЭВМ, необходимо выполнять большое количество операций умножения (миллионы и миллиарды), что занимает большое количество машинного времени.

В связи с развитием средств вычислительной техники и применения их для обработки сигналов широко используются преобразования, содержащие в качестве ортогонального базиса кусочно-постоянные, знакопеременные функции. Эти функции легко реализуются с помощью средств вычислительной техники (аппаратно или программно) и их использование позволяет свести к минимуму время машинной обработки (за счет исключения операции умножения).

К числу таких преобразований можно отнести преобразования Уолша и Хаара, которые широко используются в области управления и связи. В области компьютерной технике эти преобразования используются при анализе и синтезе устройств логического типа, комбинационных схем особенно использующих большие и сверхбольшие интегральные схемы (БИС и СБИС), содержащие сотни тысяч элементов, выполняющих различные логические функции. Преобразования Уолша и Хаара используют кусочно-постоянные функции Уолша, Радемахера, и др., принимающие значения ±1, либо Хаара, принимающие значения ±1 и 0 на интервале определения (-0,5, 0,5) либо (0, 1).

Все эти системы взаимосвязаны и каждую из них можно получить как линейную комбинацию из другой (например: система Радемахера- составная часть системы Уолша). Обозначение функций связанных с авторами этих функций:

Уолша - Walsh - wal(n, Q),

Хаара- Haar- har(l, n ,Q),

Радемахера - Rademacher - rad(m, Q),

Адамара - Hadamard - had(h, Q),

Пели - Paley - pal(p, Q).

Все эти системы функции представляют собой системы двоично–ортогональных базисных функций.


1. Функции Радемахера

Функции Радемахера можно определить по формуле :

rad(m,Q) = sign(sin(2mQ)), (1)

где 0 £ Q < 1- интервал определения; m- номер функции; m = 0, 1, 2, ...

Для m = 0 функция Радемахера rad(0,Q) = 1.

Знаковая функция sign(x) определяется соотношением

(2)

Функции Радемахера это периодические функции с периодом 1, т. е.

rad(m,Q) = rad(m,Q+1).

Первые четыре функции Радемахера показаны на рис. 1.


1

0 rad(0, Q)

-1

1

0 rad(1, Q)

-1

1

0 rad(2, Q)

-1

1 rad(3, Q)

0

-1

Q

0 0.51

Рис. 1. Функции Радемахера

Дискретные функции Радемахера определяются дискретными значениями Q в точках отсчета. Например: Rad(2,Q) = 1, 1, -1, -1, 1, 1, -1, -1.

Функции Радемахера ортогональные, ортонормированные (3) но являются нечетными, а значит, не образуют полную систему функций, т. к. существуют и другие функции ортогональные функциям Радемахера (например: rad(m,Q) = sign(cos(2mQ))) поэтому их применение ограничено.

(3)

Полными двоично-ортогональными системами базисных функций являются системы функций Уолша и Хаара.

2. Функции Уолша

Функции Уолша представляют собой полную систему ортогональных, ортонормированных функций. Обозначение: wal(n, Q), где - номер функции, при этом: n = 0, 1,... N-1; N = 2i ; i = 1, 2,….

Первые 8 функций Уолша приведены на рис. 2.

1

0 wal(0, Q)

-1

1

0 wal(1, Q)

-1

1

0 wal(2, Q)

-1

1

0 wal(3, Q)

-1

1

0 wal(4, Q)

-1

1 wal(5,Q)

0

-1

1wal(6,Q)

0

-1

1 wal(7,Q)

0

-1

Q

0 0.5 1

Рис. 2. Функции Уолша

Функция Уолша имеет ранг и порядок. Ранг –число единиц в двоичном представлении n. Порядок - максимальный из содержащих единицу номер разряда двоичного представления. Например, функция wal(5,Q) имеет ранг- 2 а порядок –3 (n = 5Þ 101).

Функции Уолша обладают свойством мультипликативности. Это значит, что произведение любых двух функций Уолша также является функцией Уолша: wal(k,Q)wal(l,Q)= wal(p,Q), где p = k Å l. В связи с возможностью применения к функциям Уолша логических операций, они широко используются в многоканальной связи с разделением по форме (используется также временное, частотное, фазовое и т. д. разделение), а также аппаратуре формирования и преобразования сигналов на базе микропроцессорной техники.

Функции Уолша можно получить как произведение функций Радема-хера, номер которых соответствует коду Грея номера функции Уолша. Соответствия для первых 8 функций Уолша приведены в табл. 1.

Таблица 1

N

Двоичный

код n

Код

Грея

Соотношения
0000000wal(0,Q)=1
1001001wal(1,Q)=rad(1,Q)
2010011wal(2,Q)=rad(1,Q)×rad(2,Q)
3011010wal(3,Q)=rad(2,Q)
4100110wal(4,Q)=rad(2,Q)×rad(3,Q)
5101111wal(5,Q)=rad(1,Q)×rad(2,Q)×rad(3,Q)
6110101wal(6,Q)=rad(1,Q)×rad(3,Q)
7111100wal(7,Q)=rad(3,Q)