Скачать

Гигиеническое значение питьевой воды и рационального водоснабжения

Гигиеническое значение питьевой воды и рационального водоснабжения


Содержание

1. Гигиеническое значение питьевой воды и рационального водоснабжения

1.1 Эпидемиологическое значение воды

1.2 Химический состав воды и его влияние на здоровье населения

1.3 Гигиенические требования к качеству питьевой воды

1.4 Гигиеническая характеристика источников водоснабжения

1.5 Санитарная охрана источников водоснабжения

1.6 Методы улучшения качества питьевой воды

Список использованных источников


1. Гигиеническое значение питьевой воды и рационального водоснабжения

Проблема гигиены водоснабжения затрагивает интересы большого круга людей. Эта ее особенность вытекает из той роли, которую играет вода в физиологии человека.

Как известно, тело человека состоит на 65% из воды. Организм даже в условиях голодания, неутоляемой жажды при отсутствии физической нагрузки теряет некоторое количество воды, которая образуется в результате непрерывно протекающих окислительных процессов.

Сравнительно небольшой дефицит воды в организме приводит к серьезным нарушениям здоровья. При потере воды до 10% отмечается резкое беспокойство, слабость, тремор конечностей. В эксперименте на животных показано, что потея 20-22% воды приводит к их гибели. Все это объясняется тем, что процессы пищеварения, синтез живого вещества в организме и все обменные реакции происходят только в водной среде.

Несмотря на исключительно большую физиологическую роль воды, расход ее для питьевых целей невелик. В условиях умеренного климата при отсутствии физической нагрузки, человек теряет (следовательно, и употребляет) 1,5 л воды в сутки. Н а уровень потребления воды для питья оказывают влияние природные (температура и влажность воздуха, инсоляция, ветер) и социальные (условия труда) факторы. Так, при физической работе средней тяжести в умеренном климате необходимо 4л, при той же работе в жарком климате - 5л воды в сутки. В исключительных случаях (при работе в условиях пустыни или в горячих цехах) потребность человека в жидкости может повышаться до 11л в сутки.

Однако гигиеническое значение воды не исчерпывается лишь ее физиологической ролью. Большое количество ее необходимо для санитарных и хозяйственно-бытовых целей. Использование воды в достаточном количестве способствует развитию гигиенических навыков (уход за телом, поддержание в чистоте предметов обихода и т.д.).

Санитарное состояние лечебно-профилактических учреждений находится в большой зависимости от количества потребляемой воды. Рациональное централизованное водоснабжение является важным условием предупреждения внутрибольничных инфекций.

Вода питьевого качества необходима для создания должного санитарно-технического режима на предприятиях пищевой промышленности и общественного питания с целью предупреждения пищевых токсикоинфекций и интоксикаций. В широких масштабах вода используется для проведения оздоровительных и физкультурных мероприятий (плавательные бассейны), а также гидротерапии.

Следует подчеркнуть, что для водопотребления с целью как профилактики инфекционных заболеваний, так и улучшения санитарных условий жизни населения необходима вода, по своим качествам соответствующая питьевой.

Количество воды, необходимое для одного жителя в сутки, зависит от климата местности, культурного уровня населения, степени благоустройства города и жилого фонда. В среднем по республике Беларусь водопотребление составляет более 200 л/сутки. В некоторых городах развитие водопровода позволяет обеспечить достаточно высокие нормы водопотребления (до 400 л/сутки).

1.1 Эпидемиологическое значение воды

Централизованное водоснабжение позволяет резко поднять уровень санитарной культуры населения, способствует уменьшению заболеваемости лишь при бесперебойной подаче достаточного количества воды определенного качества. Нарушение тех или иных санитарных правил как при организации водоснабжения, так и в процессе эксплуатации водопровода влечет за собой санитарное неблагополучие вплоть до настоящих катастроф.

Наиболее массовые и с тяжелыми последствиями нарушения общественного здоровья связаны с возможностью переноса с водой возбудителей кишечных инфекционных заболеваний. Доказана возможность передачи через воду холеры, брюшного тифа, сальмонеллезов, дизентерии, бруцеллеза, вирусного гепатита и др.

В воде источников водоснабжения часто обнаруживают вирусы полимиелита, различные адено- и энтеровирусы.

По данным ВОЗ ежегодно в мире из-за низкого качества питьевой воды умирает около 5 млн. человек. Инфекционная заболеваемость населения, связанная с водоснабжением, достигает 500 млн. случаев в год. Это дало основание назвать проблему гигиены водоснабжения, т.е. снабжения доброкачественной водой в достаточном количестве, проблемой N 1.

Для того чтобы возможность распространения инфекционных заболеваний через воду стала реальной, необходимо одновременное наличие трех условий.

Первое условие - возбудители заболевания должны попасть в воду источника водоснабжения. При современном развитии канализации населенных мест, наличии инфекционных больных и здоровых бактерионосителей это условие постоянно имеется.

Второе условие - патогенные микроорганизмы должны сохранять жизнеспособность в водной среде в течение достаточно длительного времени. Реальность этого условия определяется способностью сохранения микроба как биологического вида. Практические наблюдения и экспериментальные данные свидетельствуют о возможности их длительного существования вне организма человека, например в водной среде.

Третье условие - возбудители инфекционных заболеваний должны попасть с питьевой водой в организм человека. Это условие может реализоваться при нарушении технологии водоподготовки на станции очистки воды или первой эксплуатации водопроводной сети.

Заключение перечисленных выше условий очень важно для правильной тактике врача при разработке профилактических мероприятий и контроле за их осуществление.

1.2 Химический состав воды и его влияние на здоровье населения

В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она постоянно имеет большое количество различных элементов и соединений, состав и соотношение которых определяется условиями формирования воды, составом водоносных пород. Большое влияние на состав природных вод, как поверхностных, так и подземных, оказывает техногенное их загрязнение.

Когда мы говорим о воде как причине заболеваний неинфекционной природы, мы имеем в виду влияние на здоровье человека химических примесей, наличие и количество которых обусловлено природными особенностями формирования источника водоснабжения либо техногенными и антропогенными факторами.

Издавна с химическим (минеральным) составом воды связывалась возможность развития среди населения массовых заболеваний. Влияние общей минерализации воды, или суммарного солевого состава, на организм человека - наиболее изученный вопрос, связанный с проблемой водоснабжения. Предел минерализации питьевой воды (сухого остатка) 1000 мг/г был в свое время установлен по органолептическому признаку. Основную часть сухого остатка пресных вод составляют хлориды и сульфаты. Эти соли обладают выраженным солевым или горьким вкусом, что является основанием для ограничения их содержания в воде на уровне порога ощущения: 350 мг/л для хлоридов и 500 мг/л для сульфатов.

Установлено, что нижним пределом минерализации, при котором гомеостаз организма поддерживается адаптивными реакциями, является сухой остаток в 100 мг/л, оптимальный уровень минерализации питьевой воды находится в диапазоне 200 - 400 мг/л. При этом минимальное содержание кальция должно быть не менее 25 мг/л, магния 10 мг/л.

Жесткость воды, обусловленная суммарным содержанием кальция и магния, обычно рассматривалась в хозяйственно-бытовом аспекте (образование накипи, повышенный расход моющих средств, плохое разваривание мяса и овощей и т.д.). ВЫ тоже время имеется прямая высокая корреляция жесткости воды с содержанием в ней, кроме кальция и магния, еще 12 элементов и ряда анионов. Однако уже давно существовали предположения об этиологической роли солей, обусловливающих жесткость воды, в развитии мочекаменной болезни. Урологами выделяются даже так называемые каменные зоны - территории, на которых уролитиаз может считаться эндемическим заболеванием. Источники питьевой воды в этих зонах характеризуются высокой жесткостью.

В последние годы высказано предположение, что вода с низким содержанием солей жесткости способствует развитию сердечно-сосудистых заболеваний.

Наличие, концентрация и соотношение нитратов и нитритов в воде источников хозяйственно-питьевого водоснабжения до недавнего времени расценивались лишь как показатели санитарного состояния водоема, свидетельствующие о степени и давности его загрязнения органическими веществами. В 1945 г. были описаны 2 случая развития цианоза у детей раннего возраста, закончившиеся смертельно. Цианоз сопровождался наличием в крови повышенных количеств метгемоглобина, что связывалось с высоким содержанием в колодезной воде, использовавшейся для разведения детских питательных смесей, нитратов. В дальнейшем это заболевание получило название водно-нитратной метгемоглобинемии. Легкие формы токсической метгемоглобинемии проявляются такими симптомами как слабость, бледность, повышенная утомляемость, и при недостаточной осведомленности могут быть отнесены за счет других причин. Нитраты, как известно, не способствуют образованию метгемоглобина. Их вредное действие проявляется тогда, когда в результате диспепсии, дисбактериоза в кишечнике они восстанавливаются в нитриты. Всасывание нитритов приводит к повышению содержания метгемоглобина в крови.

В воде обнаружено до 65 микроэлементов, содержащихся в тканях животных и растений в концентрациях, соответствующих тысячным долям процента и менее. Гигиеническое значение микроэлементов, определяется биологической ролью многих из них, поскольку они не только участвуют в минеральном обмене, но и существенно влияют на общий обмен в качестве катализаторов биохимических процессов. В настоящее время доказано биологическое значение для животных и растений около 20 микроэлементов.

Необходимо учитывать, что ряд микроэлементов в концентрациях, встречающихся в природной воде, могут оказывать неблагоприятное влияние на здоровье или изменять органолептические свойства воды. Поэтому они подлежат нормированию.

Нередки случаи, когда те или иные примеси к питьевой воде, не являлись непосредственной причиной болезни, оказывают косвенное неблагоприятное влияние, ухудшая органолептические свойства воды. Наличие мути, необычный цвет, запах и привкус воды с глубокой древности служили признаком ее недоброкачественности. В процессе эволюции человека выработалась защитная реакция - чувство отвращения и представление об опасности для здоровья воды с неблагоприятными органолептическими свойствами.

Установлено, что незначительные изменения органолептических свойств воды снижают секрецию желудочного сока. Вместе с тем приятные вкусовые ощущения повышают остроту зрения и частоту сокращений сердца, а неприятные понижают.

Нельзя не учитывать и эстетическое воздействие неблагоприятных органолептических свойств воды. В этой связи уместно вспомнить слова

Ф.Ф. Эрисмана: "Было бы непростительной ошибкой считать удовлетворение этого эстетического требования роскошью, т.к. здесь эстетика и гигиена сливаются настолько, что разделить их положительно не представляется возможным".

Таким образом природная вода с крайне выраженной степенью колебания ее состава и свойств далеко не всегда может удовлетворить физиологические и гигиенические потребности человека. В ряде случаев ее потребление может вызвать неблагоприятные изменения в организме: от различных случаев нарушения метаболизма до развития выраженных нозологических форм, а микробная флора природной воды способна вызвать эпидемические вспышки кишечных инфекционных заболеваний. Отсюда вытекает необходимость гигиенического нормирования или стандартизации состава и свойств питьевой воды, а также обработки источников водоснабжения.

1.3 Гигиенические требования к качеству питьевой воды

Стандартизация качества воды имеет большую историю. Критерии безопасности воды для здоровья менялись с расширением медицинских и биологических знаний. Соответственно менялись и гигиенические требования к воде. В истории гигиенического нормирования качества питьевой воды можно выделить четыре этапа.

Первый этап нормирования качества воды относится к глубокой древности. По свидетельству Гиппократа (трактат "О воздухе, водах и местностях") для отличия чистой, т.е. "здоровой", воды от непригодной, "нездоровой", пользовались внешними признаками ее качества (мутность, цветность, запах, привкус), которые легко определять органами чувств. Органолептический способ оценки воды как единственно доступный в то время безраздельно господствовал в течение многих веков. Однако общее, только качественное, определение органолептических свойств воды не придавало ее оценке необходимую степень объективности и не могло охарактеризовать многих весьма важных признаков.

Становление второго этапа связано с открытиями М. Ломоносова и Лавуазье в области химии, а именно с развитием количественного и качественного анализа. Результаты химических анализов, выраженные мерой и массой, привлекали своей конкретностью, т.к. могли быть использованы в качестве масштаба для сравнения воды разных источников. Большое внимание уделялось определению общей минерализации воды по плотному остатку, содержанию хлоридов и сульфатов, жесткости воды. Выбор методов определяется их доступностью. Со временем стали определять содержание в воде органических соединений и продуктов их разложений (аммиак, нитриты, нитраты).

Третий этап охарактеризовался преимущественным изучением бактериального состава воды и переходом к гигиеническому нормированию качества питьевой воды. Особое значение имело открытие Робера Коха. Участвуя в 1891 году в ликвидации крупной эпидемии холеры в Гамбурге-Альтоне, Кох установил не только факт отсутствия заболеваний в Альтоне, но и связал его с очисткой речной воды на сапрофитную микрофлору показали, что вода альтонского водопровода содержала не более 100 сапрофитов в одном мл. А в воде гамбургского водопровода было гораздо больше микробов. На этом основании Кох сделал вывод, имевший характер количественной оценки, что вода, в которой находится не более 100 сапрофитов в 1мл, не содержит патогенных микробов (в данном случае холерных вибрионов). Это первый пример, когда гигиенический норматив был предложен в результате излучения степени влияния воды не организм. Вместе с тем появилось представление о качестве воды не только водоисточника, но и питьевой воды. В дальнейшем в практику оценки эффективности очистки был внедрен метод определения титра кишечной палочки.

Кишечная палочка, являясь обязательным и постоянным обитателем кишечника человека, находится в тесной связи с группой патогенных микроорганизмов-возбудителей кишечных инфекций человека. По этой причине обнаружение ее в воде в большей мере свидетельствует о наличии степени эпидемической опасности. Не маловажно, что метод определения кишечной палочки в воде высоко надежен и доступен для лабораторий. В 1914 году в США был опубликован первый стандарт качества питьевой воды, которым нормировался только бактериальный состав - общий счет колоний и титр кишечной палочки.

В первом стандарте оказался воплощенным новый принцип нормирования качества воды, исходивший из ее пригодности для питьевых целей, безопасности и безвредности для здоровья населения. Третий этап развития гигиенического нормирования можно назвать переломным. Начиная с этого времени проблема гигиены воды приобрела физиолого-гигиеническое направление.

На четвертом этапе по мере накопления новых знаний, научных данных о влиянии на организм человека химических факторов внешней среды появилась необходимость пересмотра стандарта с целью его расширения.

Гигиенические требования и контроль качества" на основании новых научных данных опыта эксплуатации водопроводов и контроля за их работой был уточнен ряд нормативов, подчеркнуто, что качество воды, соответствующее требованиям ГОСТа, должно обеспечиваться на протяжении всей водопроводной сети и не зависит от вида источника водоснабжения и системы обработки воды.

Требования ГОСТа, обеспечивающие безопасность питьевой воды в эпидемическом отношении, основываются на косвенных показателях - количестве сапрофитов в 1мл воды и индексе бактерий группы кишечной палочки.

Требования ГОСТа к химическому составу воды включают 20 показателей для веществ, встречающихся в природных водах и добавляемых в нее при обработке на очистных сооружениях. При этом одна группа показателей призвана обеспечить безопасность воды в токсикологическом отношении, другая - не допускать нарушения органолептических свойств воды.

ГОСТ регламентирует требования к качеству питьевой воды, подаваемой централизованными системами хозяйственно-питьевого водоснабжения из местных водоисточников (шахтные колодцы, каптажи родников и пр.) безопасность водопользования обеспечивается нормативами, в соответствии с которыми вода местных источников должна иметь прозрачность не менее 30 см по шрифту Снеллена, цветность не более 300, привкус и запах при 10 20 0С не более 2-3 баллов, содержание нитратов 45 мг/л, коли-индекс не более 10. Возможность некоторого смягчения требований к качеству воды местных источников водоснабжения обусловлена большей возможностью контроля за эпидемической обстановкой в зоне питания источника водоснабжения и ограниченностью контингента, пользующихся колодцем или каптажом.

1.4 Гигиеническая характеристика источников водоснабжения

Одним из главных принципиальных вопросов гигиены питьевой воды является выбор водоисточника. Этот выбор проводится путем технико-экономического сравнения вариантов источников водоснабжения, которыми могут быть атмосферные, подземные и поверхностные.

Атмосферные воды, весьма слабо минерализованы, очень мягкие, содержат мало органических веществ и свободны от патогенных бактерий. В дальнейшем на качество воды влияет способ сбора и хранения.

Подземные воды, пригодны для целей питьевого водоснабжения, залегают на глубине не более 250 - 300 м. По условиям залегания различают верховодку, грунтовые и межпластовые воды, значительно отличающиеся друг от друга по гигиеническим характеристикам.

Подземные воды, залегающие наиболее близко к земной поверхности, называются верховодкой. Вследствие поверхностного залегания, отсутствия водоупорной кровли и малого объема верховодка легко загрязняется, как правило, в санитарном отношении она ненадежна и не может считаться хорошим источником водоснабжения.

Грунтовые воды - воды первого от поверхности земли постоянно существующего водоносного горизонта. Они не имеют защиты из водоупорных слоев; область питания грунтовых вод совпадает с областью их распространения.

Грунтовые воды характеризуются весьма непостоянным режимом, который целиком зависит от гидрометеорологических факторов, частоты выпадения и обилия осадков. Вследствие этого имеются значительные сезонные колебания уровня стояния, химического и бактериального состава грунтовых вод. Запас их пополняется за счет инфильтрации атмосферных осадков либо воды рек природы высокого уровня. В процессе инфильтрации вода в значительной мере освобождается от органического и бактериального загрязнения; при этом ухудшается и ее органолептические свойства. Используются грунтовые воды главным образом в сельской местности при организации колодезного водоснабжения.

Межпластовые подземные воды залегают между водоупорными слоями и в зависимости от условий залегания могут быть напорными или безнапорными. Межпластовые воды отличаются от грунтовых невысокой температурой (5-120), постоянством состава. Обычно они прозрачны, бесцветны, лишены запаха и какого-либо привкуса.

Благодаря длительной фильтрации и наличию водоупорной кровли, защищающей межпластовые воды от загрязнения, последние отличаются почти полным отсутствием микроорганизмов, и могут использоваться для питья в сыром виде. Добываются межпластовые воды путем устройства глубоких трубчатых и, реже, шахтных колодцев.

Постоянный и большой дебит (от 1 до 200 м3/ч) и хорошие качества воды позволяют рассматривать межпластовые водоносные горизонты как лучший источник водоснабжения для небольших и средних водопроводов, большинство которых подает воду населению без какой-либо очистки.

Родники. Подземные воды могут самостоятельно выходить на поверхность земли. В таком случае они носят название родников, из которых образуются ключи или ручейки.

Поверхностные воды стекают по естественным уклонам к более пониженным местам, образуя проточные и непроточные водоемы: ручьи, реки, проточные и непроточные озера. Открытые водоемы питаются не только атмосферными, но и частично подземными водами.

Открытые водоемы подвержены загрязнению извне, поэтому с эпидемиологической точки зрения все открытые водоемы в большей или меньшей степени потенциально опасны. Особенно сильно загрязняется вода в участках водоема, лежащих у населенных пунктов и в местах спуска сточных вод.

При необходимости использовать открытый водоем для водоснабжения следует, во-первых, отдать предпочтение крупным и проточным незарегулированным водоемам, во-вторых, охранять водоем от загрязнения бытовыми и промышленными сточными водами и, в-третьих, надежно обеззараживать воду.

В связи с изложенными о гигиенической характеристике водоисточников разного происхождения ГОСТ предусматривает при выборе источников водоснабжения в первую очередь ориентироваться на напорные, межпластовые артезианские воды. При невозможности их использования изыскивают другие в следующем порядке: а) межпластовые напорные воды, в том числе родниковые; б) грунтовые воды; в) открытые водоемы.


1.5 Санитарная охрана источников водоснабжения

С целью охраны источников водоснабжения от загрязнения организуются зоны санитарной охраны (ЗСО), которые имею три пояса.

Первый пояс ЗСО подземных и поверхностных источников водоснабжения и водопроводных сооружений устанавливается в целях устранения возможности случайного или умышленного загрязнения воды источника в месте нахождения водозаборных и водопроводных сооружений. Водозаборы подземных вод должны располагаться, как правило вне территории промышленных предприятий и жилой застройки. Первый пояс ЗСО устанавливается не расстоянии не менее 30 м от водозабора - при использовании защищенных подземных вод и на расстоянии не менее 50 м - при использовании недостаточно защищенных подземных вод. При использовании группы подземных водозаборов, граница первого пояса должна находиться на расстоянии не менее 30 м и 50 м, соответственно, от крайних скважин (или шахтных колодцев).

Граница второго пояса ЗСО определяется гидродинамическими расчетами, исходя из условий, что если за ее пределами в водонасосный горизонт поступят микробные /нестабильные/ загрязнения, то они не достигают водозабора. Для эффективной защиты подземного источника водоснабжения от микробного (нестабильного) загрязнения необходимо, чтобы расчетное время продвижения загрязнения с подземными водами от границ второго пояса до водозабора было достаточным для утраты жизнеспособности и вирулентности патогенных микроорганизмов, т.е. для эффективного самоочищения.

Граница третьего пояса ЗСО определяется гидродинамическими расчетами, исходя из условия, что если за ее пределами в водонасосный горизонт поступят химические (стабильные) загрязнения, они или не достигают водозабора, перемещаясь с подземными водами вне области питания, или достигают водозабора, но не ранее расчетного времени.

Схема водоснабжения определяет взаимное, технологически увязанное расположение сооружений системы водоснабжения и порядок подачи воды от источника и потреблению. Выбор схемы зависит от источника водоснабжения, требований к количеству и качеству воды, надежности и живучести системы водоснабжения, рельефа местности и других особенностей.

Питьевая вода во всех случаях должна быть безопасной в эпидемическом отношении, безвредной по химическому составу и иметь благоприятные органолептические свойства, т.е. должна удовлетворять гигиеническим требованиям ГОСТ "Вода питьевая".

1.6 Методы улучшения качества питьевой воды

Основными методами улучшения качества питьевой воды являются осветление, обесцвечивание и обеззараживание. Осветление и обесцвечивание воды достигаются с помощью коагуляции, отстаивания и фильтрации. Для обеззараживания воды применяют химические (хлорирование, озонирование) и физические (кипячение, УФ - облучение) методы.

Наиболее простым, надежным и широко распространенным методом обеззараживания воды является ее хлорирование.

Для хлорирования воды применяют газообразный хлор, хлорную известь, двуокись хлора, гидрохлорид кальция, хлорамины. Для обеззараживания индивидуальных запасов воды применяются хлорсодержащие таблетки: патоцид, аквасепт и др.

Различают несколько способов хлорирования воды:

1. Хлорирование нормальными дозами (доза хлора устанавливается по величине хлорпоглощаемости и санитарной норме остаточного хлора).

2. Хлорирование с аммонизацией (в воду одновременно вводят хлор и аммиак для образования хлораминов).

3. Гиперхлорирование (доза хлора значительно превышает хлорпоглощаемость воды, под которой понимают то количество хлора, которое расходуется в процессе хлорирования 1 л воды в течение 30 мин на окисление органических веществ, легко окисляющихся неорганических веществ и соединение с протоплазмой бактериальных клеток. Для обеспечения надежности обеззараживания необходимо, чтобы после завершения процесса хлорирования в воде содержался остаточный хлор в следующих количествах:

0,3-0,5 мг/л свободного остаточного хлора (в виде хлорноватистой кислоты) при нормальном хлорировании и 0,6-1,0 мг/л связанного хлора (в виде хлораминов) при хлорировании с аммонизацией. Необходимая доза хлора при хлорировании нормальными дозами определяется в каждом случае путем проведения пробного хлорирования, с учетом хлоропоглощаемости воды.

Минимальное время контакта хлора с водой при хлорировании нормальными дозами составляет летом не менее 30 мин; зимой при низкой температуре время контакта увеличивается до 1 ч.


Список использованных источников

1. Габович А.Д. Гигиена / А.Д. Габович - Киев, 1984. - 320с.

2. Румянцев Г.И., Вишневская Е.П., Козеева Т.А. Общая гигиена. - М., 1985.

3. Покровский В.П. Гигиена / В.П. Покровский - М., 1979. - 460с.