Геометрия Лобачевского
ГЕОМЕТРИЯ ЛОБАЧЕВСКОГОЛобачевский по существу берет за отправной пункт все то, что Евклид доказал без помощи 5-го постулата. Все эти предположения являются общими как для геометрии Евклида, так и для геометрии Лобачевского
Таким образом, все предложения абсолютной геометрии сохраняют свою силу и в геометрии Лобачевского. Абсолютная геометрия есть общая часть и общий фундамент евклидовой геометрии и геометрии Лобачевского
В первом случае мы получим геометрию Евклида, во втором случае –
Геометрию Лобачевского. Отсюда ясно, что все сходное в геометриях Евклида и Лобачевского имеет свои основания в абсолютной Геометрии, а все то, что различно в них, коренится в различии аксиом параллельности
Укажем ряд важнейших планиметрических теорем, относящихся к абсолютной геометрии
Исходным пунктом геометрии Лобачевского является принятие всех предложений геометрии Евклида, не зависящих от 5-го постулата (т.е. абсолютной геометрии, включая аксиомы Паша, Архимеда, Дедекинда), и присоединение к ним взамен отброшенного 5-го постулата следующая аксиома, противоположный аксиоме Плейфера, а значит, и 5-му постулату
Через точку, лежащую вне прямой плоскости, определяемой ими, можно провести не менее 2-х прямых, не пересекающих данной прямой
Эта аксиома утверждает существование, по крайней мере 2-х таких прямых.Отсюда следует, что таких прямых существует бесконечное множество
Очевидно, что все прямые, проходящие через точку М внутри вертикальных углов a и b , образованных прямыми b и c также не пересекают а , а таких прямых бесконечное множество
Плоскость (или пространство), в которой предполагается выполнение аксиомы Лобачевского, называется плоскостью (или пространством) Лобачевского
Перейдём непосредственно к параллельным Лобачевского
Две граничные прямые СС’ и DD’ называются параллельными прямой ВВ’ в точке А, причём прямая С’С называется параллельной В’В в направлении В’В, а прямая D’D называется параллельной прямой ВВ’ в направление ВВ’. Острый угол a , образуемый параллельными с перпендикуляром АР, называется углом параллельности в точке А относительно прямой BB’. Этот угол, есть функция длины р перпендикуляра АР и обозначается так: a =П (р). АР называются отрезком параллельности в точке А относительно прямой BB’
Все прямые пучка не пересекающие BB’ и лежащие внутри заштрихованных вертикальных углов, называются расходящимися с BB’ или сверх параллельными к BB’; угол, образуемый такой прямой с перпендикуляром АР с обеих от него сторон, больше угла параллельности a
Наконец , все остальные прямые пучка, образующие с АР с какой-либо стороны острый угол, меньше угла параллельности a , называются пересекающими прямую BB’ или сходящимися с BB’
Необходимо обратить внимание , что геометрия Лобачевского при указание, то прямая СС’ параллельно прямой BB’, является совершенно обязательным также указывать, во-первых, в каком направление CC’ параллельно BB’, во-вторых, в какой точке , ибо у нас пока нет уверенности в том , что если мы на прямой CC’ возьмём какую-нибудь точку М , отличную от А , то и по отношению к пучку прямых с центра в точке М прямая СС’ будет граничной прямой
Определение. Прямая С’C называется параллельной прямой в направление B’B в точке А, если , во-первых, прямая С’C не пересекает прямой BB’, во-вторых , C’C является граничной в пучке прямых с центром в точке А, т. е. всякий луч АЕ, проходящий внутри угла CAD, где D-любая точка прямой BB’, пересекает луч DB
Условимся в целях краткости и удобства обозначать параллельность прямой АА’ к BB’в направление B’B символом AA’ к к B’B, где порядок букв указывает направление параллельности. На чертеже направление параллельности указывается стрелками
Т еорема1. Если прямая ВВ’ к к АА' в точке М, то ВВ' к к АА' в любой своей точке N
Теорема 2 . Если ВВ' к к АА', то и обратно: АА' к к ВВ'
Теорема 3. Если АА' к к СС' и ВВ' к к СС', то АА' к к ВВ'
Теорема 4 . Если прямая CC’ лежит между двумя прямыми АА’ и BB’, параллельными в некотором направление, не пересекая их, то CC’параллельна обеим этим прямым в том же направлении
Теорема 5. Если две прямые при пересечении с третьей образуют равные соответственные углы, или внутренние односторонние углы, в сумме составляющие 2d, то эти прямые расходятся
Задача 902.(Сборник задач - Атанасян, ч.2) Пусть (U 1 V 1 ) к к (U 2 V 2 ). Доказать, что если прямая (UV) лежит между (U 1 V 1 ) и (U 2 V 2 ) и не пересекает одну из них, то она параллельна данным
Действительно, отрезок U 1 U 2, соединяющий любые точки U 1 и U 2 параллельных прямых U 2 V 2 и U 1 V 1 , пересечет UV в некоторой точке U, ибо UV по условию лежит между U 2 V 2 и U 1 V 1 (теорема 1.18)
В силу параллельности U 2 V 2 и U 1 V 1 любой луч U 2 E , проходящий внутри угла V 2 U 2 U 1 , пересечёт U 1 V 1 , а значит, и UV. Следовательно, U 2 V 2 к к UV. Пользуясь теоремами 2 и 3 , легко убедиться, что U 1 V 1 к к UV
Интересно отметить, что в геометрии Лобачевского прямая может пересечь две параллельные, не пересекая третьей. Действительно, например, любая прямая EF, расходящаяся с АА’, пересекает СС’и BB’, не пересекая АА’
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Графы
Данная работа является типовым расчетом N2 по курсу"Дискретная математика" по теме "Графы", предлагаемая сту-дентам МГТУ им. Баумана. (Вари
- Группы преобразований
ГРУППЫ ПРЕОБРАЗОВАНИЙ1.Перемещения Пусть X - множество всех точек прямой , плоскости или трехмерного пространства . Обозначим через d(P, Q)
- Давид Гильберт
ДАВИД ГИЛЬБЕРТ Вступление Давид Гильберт был одним из истинно великих математиков своего времени. Его труды и его вдохновляющая лично
- Движения. Преобразования фигур
ДВИЖЕНИЯ. ПРЕОБРАЗОВАНИЯ ФИГУР Движением в геометрии называется отображение, сохраняющее расстояние. Следует разъяснить, что подразу
- Двойной интеграл в полярных координатах
Двойной интеграл в полярных координатахПусть в двойном интеграле (1)при обычных предположениях мы желаем перейти к полярным координата
- Двойственный симплекс-метод и доказательство теоремы двойственности
ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД И ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ДВОЙСТВЕННОСТИСодержание 1. Двойственность в линейном программировании 2. Не
- Декарт
ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ РОССИЙСКАЯ ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ