Скачать

Выбор специальности

После окончания среднего учебного заведения перед выпускниками встает множество проблем, главной из которых является выбор профессии. Необходимость продолжать обучение диктует сама жизнь, так - как без теоретической подготовки невозможно стать профессионалом в какой-либо отрасли.

Цель моего обучения в МИРЭА - совершенствование уже имеющихся знаний, полученных в процессе обучения в техникуме, а так же получение статуса инженера.

В эпоху бурного роста НТП все больше внимания уделяется дальнейшему совершенствованию вычислительной техники. Это связано с дальнейшими разработками информационных систем, автоматизированных систем управления, систем автоматизации проектирования и т. д. Повышение сложности народнохозяйственных задач, совершенствование планирования и управления, усложнение технических устройств, учет огромного числа параметров при анализе вариантов для принятия решений различного характера, управление сложными технологическими процессами, решение сложных научно-технических задач - все эти и другие проблемы объективно вызывают необходимость использования цифровой вычислительной техники.

В этой связи для меня представляется интересной специальность "Вычислительные машины, комплексы, системы и сети".

Инженерное образование - ценная основа для многих типов деятельности, как связанной с техникой, так и не связанных с ней. Острый и хорошо дисциплинированный ум - главное и ценнейшее качество человека, работающего в любой области. Вдобавок такой человек обладает технической культурой. При современном уровне цивилизации человек уже не считается высокообразованным, если он не знаком с техникой.

Современное инженерное дело исторически развивалось на основе двух достижений, которые в течение ряда веков не имели общих точек соприкосновения. Одним их этих достижений было постепенное совершенствование специалистов, посвятивших себя созданию приборов, устройств и технологических процессов, приносящих пользу человеку. Другое историческое достижение - быстрый рост за последнее столетие объема научных знаний.

Классические инженеры не всегда понимали законы природы, лежавшие в основе тех или иных физических явлений. Современные инженеры знакомы со строением вещества, электромагнитными явлениями, взаимодействием химических элементов, законами движения и многим другим.

Глубокое понимание законов природы привело к значительным переменам в инженерном деле. Задачи, которые решает современный инженер, часто те же, что решали и классические инженеры, но использование науки при решении задач сейчас настолько широко, что одной из главных особенностей современного инженера стал научный подход к решению инженерных задач. Несмотря на то, что на первом месте стоит теперь наука, инженеру по-прежнему необходимы изобретательность, собственное мнение и интуиция.

Инженер стремится создать реальный прибор, устройство или разработать процесс, полезный людям. Инженер созидает. Искусственные спутники Земли, служащие для предсказаний погоды, электрокардиограф, атомная электростанция, ЭВМ, ракеты и самолеты, летящие со сверхзвуковой скоростью - все это результаты инженерной деятельности. Инженер создает все это в процессе работы, называемом проектированием (в отличие от ученого, главная задача которого - исследования). Процесс проектирования составляет саму суть инженерного дела.

Проектируя тот или иной прибор, инженер заботится о полезности, экономической целесообразности, безопасности, технологичности его творения. Доктор Т. Кэрмен сказал, что "ученый изучает то, что существует, а инженер создает то, чего еще никогда не было".

Так Фарадей сформулировал принципы электромагнитной индукции. Применили же его достижение инженеры, создав генераторы электрического тока.

Но следует отметить, что в поисках решений поставленных задач инженер выполняет и определенные исследования. Например, разрабатывая практические способы опреснения морской воды, инженеры участвовали в исследованиях, чтобы приобрести дополнительные знания об основных процессах, происходящих при опреснении воды. Но занимались они исследованиями только потому, что это было необходимо для решения стоявшей перед ними задачи. Главной же целью было создание экономически целесообразного процесса.

Инженер - это профессия. Человек этой профессии создает приборы, устройства и процессы, применяемые для таких превращений материалов, энергии и человеческих возможностей, которые удовлетворяют нуждам общества.

Инженер - это профессия, требующая определенных знаний и мастерства при создании приборов, устройств и разработке технологических процессов. Но инженер не может быть одинаково компетентным, например, в конструировании мостов и телевизионной аппаратуры, реактивных двигателей и ткацких станков. Поэтому существует множество интересных специальностей, определяемых той областью знаний, которая необходима инженеру для решения основных задач. Среди авиаинженеров могут быть конструкторы самолетов, авиационных двигателей и систем управления ими и т. д.

Инженеры-электронщики разрабатывают электронную аппаратуру, которая используется на производстве, в народном хозяйстве, в быту. Это всевозможные радиоприемники, магнитофоны, телевизоры, радары, генераторы сигналов, вычислительная техника, полупроводниковые приборы и многое другое.

Инженеры-химики - разрабатывают способы химического превращения материалов, выделения бензинов из нефти. Они разрабатывают технологию производства пластических материалов, цемента, масел, резины и пр.

Инженеры-строители - участвуют в проектировании и строительстве основных гражданских сооружений: шоссе, мостов, плотин, каналов, систем водоснабжения и канализации, аэропортов, причалов и зданий различного назначения.

Инженеры-электрики разрабатывают способы получения, преобразования и применения электрической энергии. Они конструируют электродвигатели, генераторы тока, линии электропередачи и другие аппараты и системы.

Инженеры, специализирующиеся в отдельных отраслях промышленности, создают способы физического превращения материалов в другие виды. Например, заводы сельскохозяйственных машин, автомобильные заводы, типографии, заводы по производству управляемых снарядов, текстильные фабрики, судостроительные верфи.

Инженеры-механики создают системы, преобразующие энергию для совершения полезной механической работы. К таким системам относятся двигатели, турбины, а так же механизмы для преобразования одних видов движения в другие. Так двигатель внутреннего сгорания превращает потенциальную энергию топлива в энергию движения поршня.

Инженеры-металлурги - создатели способов выплавки и обработки металлов. Они разрабатывают способы выплавки металлов из руд и изменения их физических и химических свойств (например, процесс штамповки алюминия с вытяжкой или процесс упрочения стали).

Существует и много других специальностей инженеров. Несмотря на различные специальности, основная задача всех инженеров одинакова - создавать системы, преобразующие материалы, энергию, информацию в более полезную форму. При всех инженерных специальностях нужно владеть основными приемами работы и иметь профессиональные познания.

Роль инженерного дела в формировании современной цивилизации так велика, что без него она немыслима. Мы используем многочисленные службы, созданные инженерами, облегчающие нашу повседневную жизнь, приобретаем продукты, изготовляемые предприятиями пищевой промышленности и доставляемые магазинами.

Инженерное дело имеет огромное значение и в деле национальной безопасности. Военное превосходство уже не состоит в обучении населения военному делу и накоплению оружия всех видов. Теперь - это соревнование техники и преимущество у тех, кто идет на шаг впереди в разработке новых видов оружия. Это преимущество зависит в огромной мере от уровня развития инженерного дела. При разработке планов обороны страны обращают огромное внимание на инженерные ресурсы нации, потому что безопасность нации и ее интеллектуальный уровень идут рука об руку.

Велико влияние инженерного дела и на благосостояние населения. Экономическая деятельность способствует улучшению старых товаров и производству новых, например, вычислительных машин, являющихся основой всей современной промышленности. Улучшение методов производства и распределения позволяет сделать товары доступными широким слоям населения.


Специальность

Краткий очерк развития вычислительной техники.

Потребность в счете возникла у людей в давние времена. Но уже во времена средневековья были предприняты первые попытки механически интерпретировать функции человеческого мозга. Первая машина была очень примитивной и не имела практического значения. И хотя интерес к ней и самому подходу не угасал на протяжении целого столетия, первый реальный успех был достигнут в связи с попытками механизации арифметического счета.

В 1623 году В. Шиккардом была предложена первая из известных в настоящее время вычислительная машина, в которой были механизированы операции сложения и вычитания, и можно было выполнять умножение и деление с элементами механизации. В 1641 году Б. Паскаль сконструировал свою первую счетную машину, с помощью которой можно было выполнять операции вычитания и сложения. Первая машина, на которой можно было не только складывать и вычитать, но и механически производить операции умножения и деления, была создана Г. Лейбницем в 1673 году. Конечно, эти первые машины были очень несовершенны.

Развитие науки и техники способствует возрастанию потребностей в вычислительной технике, а ее применение в свою очередь вызывает рост знаний и совершенствование технологий. Первоначально цель конструирования ВТ состояла в освобождении человека от однообразной рутинной работы, способствуя тем самым развитию в его деятельности творческого начала. Улучшение технологии производства позволило уже в 1821 году приступить к выпуску партиями в несколько сотен штук в год счетных машин, названных их создателем К. Томасом - арифмометрами. С томас-машин началось реальное практическое применение вычислительных устройств.

Значительное влияние на развитие вычислительной техники оказали изобретения и открытия, сделанные в России. Наиболее ранним из известных счетных устройств в России была машина Е. Якобсона, созданная в конце 18 века. В дальнейшем широкую известность получили счетные приборы Ф. Слободского (1828 г.), З. Слонимского (1845 г.), И. Штоффеля (1846 г.), счисслитель Куммера (1846 г.), самосчеты В. Бунявского (1867 г.), устройство Ю. Дьякова (1874 г.), арифмометр П. Чебышева (1878 г.). Особую роль сыграло изобретение арифмометра с зубчаткой с переменным числом зубцов В. Однером (1870-1880 гг.). Арифмометры Однера, выпуск которых был налажен в 90-х годах XIX века в России, получили распространение во всем мире и в первой четверти XX века были основными математическими машинами, которые применялись во многих областях деятельности человека.

Создание подобных устройств значительно облегчало труд человека при проведении вычислений. Однако уже в начале XIX века зарождались принципиально новые концепции вычислительных машин, осуществленные в достаточной степени лишь в следующем веке при создании электронной вычислительной техники. Это направление связано с именем крупного английского математика Ч. Бэббиджа. Он предвосхитил идею и принципы устройства программно - управляемой автоматической машины, предназначенной для выполнения различных вычислений.

С аналитической машиной Бэббиджа связано и зарождение программирования. Первые программы для одноадресной машины были разработаны леди Лавлейс. В ее работах были заложены многие идеи современного программирования. В 1888 г. Голлерит создал машину, в которой был применен электрический ток для расшифровки информации, нанесенной с перфокарты.

Первые универсальные цифровые вычислительные машины были созданы в 30-40-х годах нашего столетия. Наиболее значительные успехи в этот период связаны с именами К. Цуге, Г. Айкена, Дж. Стибица, Дж. Маучли, Дж. Эккерта.

В 1936 году немецкий инженер К. Цуге приступил к конструированию машины с программным управлением на механических элементах. В 1941 году такая машина была создана. Это была первая в мире универсальная цифровая вычислительная машина с программным управлением.

В период с 1939 по 1944 гг. Айкеном в США была сконструирована ЦВМ с программным управлением на релейных и механических элементах. В 1938 году было продемонстрировано дистанционное управление машиной на электромеханических реле (Белл-1), разработанной Д.Стибицем. В 1942 году им было сконструировано устройство с программным управлением (Белл-П).

В 1945 году в США были закончены работы под руководством Д. Маучли и Д. Эккерта по созданию первой электронной ЦВМ, получившей название ЭНИАК.

Анализ сильных и слабых сторон ЦВМ ЭНИАК позволил сформулировать основные концепции организации электронных ЦВМ. Основные рекомендации заключались в необходимости использования двоичной системы счисления, иерархической организации памяти машины, создания арифметического устройства на основе схем, реализующих операцию сложения и др. Одной из главных концепций был принцип хранимой программы - программа хранится в памяти машины точно так же, как и числа. Это позволяет оперировать с закодированной в двоичном коде программой так же, как с числами, что дает возможность модифицировать программу по ходу вычислений. Был также предложен принцип параллельной организации вычислений, когда операции над числом осуществляются одновременно по всем его разрядам.

Градацию развития цифровой электронной вычислительной техники можно проводить с различных позиций - технологической, структурных решений, уровня развития средств программирования и т. д. Обычно в целях упрощения классификации периодов развития электронной вычислительной техники применяют термин "поколение", в соответствии с которым эволюция ЭВМ делится на четыре этапа.

Так ЭВМ первого поколения работали на лампах (1955 - 1960 гг.). В них был заложен последовательный во времени порядок функционирования отдельных устройств. Каждое устройство выполняет свои функции только часть общего времени, остальное время находилось в ожидании. Быстродействие машин было низкое, исчислялось килогерцами, они были ненадежны и потребляли большую мощность.

ЭВМ второго поколения (1960 - 1965 гг.) строились на транзисторах, при этом существенно повысилась надежность и снизилась потребляемая мощность.

ЭВМ третьего поколения строятся уже ни ИС средней степени интеграции. В структуры ЭВМ введены информационные каналы сопряжения, осуществляющие обмен информации между УВВ и ЗУ. При этом разгружается процессор, существенно повышается быстродействие.

ЭВМ четвертого поколения строятся уже на сверхбольших ИС (CБИС), также на сверхскоростных интегральных схемах (CCИС).

Появились так называемые модульные конструкции. Под модулем понимается любое устройство ЭВМ, способное функционировать самостоятельно, имеющее собственные цепи управления. Такая структура резко повышает надежность ЭВМ благодаря резервированию ее конструкции модулями нужных устройств.

Повышение производительности и одновременно ускорения решения задач достигается разбиением их на отдельные независимые части и параллельной обработкой одновременно на нескольких процессорах.

Для компьютеров пятого поколения характерен переход от структуры классических ЭВМ с одним потоком последовательно выполняемых команд к новым архитектурам, в которых особый упор делается на параллельную обработку данных.

Существуют системы, имеющие десятки процессоров или потоков обработки, но в будущем технический прогресс в области разработки ЭВМ обеспечит одновременное функционирование сотен, тысяч процессоров в составе одной вычислительной системы. На первый план выдвигается еще одна особенность ЭВМ параллельной обработки информации, присущая машинам с многопроцессорной архитектурой - устойчивость к отказам. Хотя некоторые параллельные многопроцессорные системы создаются исключительно для получения высокого быстродействия, целый ряд систем этого типа предназначен для повышения производительности, для непрерывной обработки информации.

В настоящее время число ЭВМ, используемых на промышленных предприятиях и в учреждениях, быстро растет. Увеличиваются и информационно-вычислительные ресурсы этих машин. Активное использование компьютеров приводит к разобщению пользователей. Поскольку, люди, работающие в одной организации, часто используют ЭВМ для решения единого комплекса задач, возникает необходимость организации связи между этими машинами для совместного использования вычислительных ресурсов и данных. Одним из путей решения этой проблемы является объединение ЭВМ в локальные сети. В зависимости от поставленных задач, используются те или иные локальные сети.

Специфика современной ситуации в вычислительной технике заключается в том, что смена поколений программного обеспечения происходит существенно медленнее, чем смена аппаратуры. Сейчас широко используются компьютеры PENTIUM П - 350 и PENTIUM П - 400. Лимит скорости у них по сравнению с предыдущими компьютерами типа PENTIUM повысился с 66 до 100 МГц. Передача данных по новой шине занимает значительно меньше времени, поэтому приложения работают быстрее. На сегодняшний день отмечается стремительный рост аппаратных средств. Фирма INTEL выпустила PENTIUM Ш -500. Они имеют высокую производительность, кроме того, в него добавлено более 70 новых инструкций, которые предназначены для ускорения написанных в расчете на них игр, вспомогательных модулей INTERNET, графических приложений и программ распознавания речи. В перспективе готовятся к выпуску системы на базе 800 МГц процессоров.

В связи с дальнейшим совершенствованием вычислительной техники изменяются и требования к специалистам. Современный инженер должен обладать следующими качествами:

  • фактические знания, которые он приобрел,
  • мастерство, которым он обладает,
  • наличие собственной точки зрения
  • постоянное стремление к повышению квалификации.

Первейшая задача инженерного образования развить эти четыре свойства. Фактические знания инженера. Физические науки - составляют существенную часть инженерного образования. Поэтому в программе обучения и существует несколько курсов физических наук. Для того, чтобы разработать комплекс приборов, устройств и технологических процессов инженер должен хорошо знать свойства материалов, законы движения, поведение жидкостей, превращения энергии и т.д. Знание основ физических наук лежит в основе инженерной технологии.

Знания, необходимые инженеру не ограничиваются физическими науками. Он должен знать инженерную технологию. Остановимся на двух наиболее важных частях этой области знаний - прикладные знания физических наук и систематизированные эмпирические знания.

После того как изучены основы физических наук, студент переходит к слушанию курсов лекций, посвященных применению этих основ на практике. Так, например, курс, посвященный анализу и синтезу электрических цепей, основан на изученных разделах электричества (заряды, электромагнитные волны, потоки электронов и др.).

Инженерная технология имеет и другую важную грань - накопление эмпирических знаний о приборах, устройствах и процессах. Каждый инженер при проектировании использует свои знания, опыт, изобретательность. Существуют идеи, которые хотя и не имеют под собой научной основы, испытаны многолетним применением на практике. Именно они и составляют основу тех эмпирических знаний, на которые так широко полагаются современные инженеры. Будущие инженеры знакомятся с этими знаниями при подготовке курсовых проектов. На старших курсах студенты начинают изучение своей специальности. Это в основном курсы технологии, которыми различаются отрасли инженерного дела. Студенты, намеревающиеся стать инженерами - электриками, изучают электрические машины, средства связи, электростанции, распределительные устройства и др.

Хотя главное место в инженерном образовании занимает специализация, многие проблемы, с которыми встречается на практике инженер, потребуют от него знаний и других областей инженерного дела. Инженеру часто придется работать бок о бок со специалистами других профессий. Инженер обязан знать экономику, основы управления производством, юриспруденцию, торговлю, трудовые взаимоотношения, психологию и социологию. Эти знания необходимы по следующим причинам. Инженер должен хорошо знать экономику своей специальности. Он должен разбираться в вопросах себестоимости, ценообразования, оборотном капитале, амортизации и др. экономических категориях. Инженеру приходится решать экономические проблемы, и для эффективного их решения он должен быть хорошим экономистом. Обширные знания побуждают инженера принимать активное участие в международной общественной жизни. Инженер должен сотрудничать со специалистами других областей, например, экономистами, бухгалтерами, юристами, социологами, психологами. Он должен знать какую помощь от них он может получить, уметь вести с ними профессиональный разговор.

Инженер не только улучшает технологию, но сотрудничает и в смежных областях. Немалую часть времени в образовании инженера занимает изучение общественно - политических наук (философии, социологии, экономики, международных отношений, истории, иностранных языков и др.).

Применяя знания, инженер также использует свои математические способности и умение чертить.

В процессе проектирования системы инженер использует все свои знания, мастерство и опыт. Он участвует в определении круга решаемых задач, выработке технических требований, применяет свои знания и изобретательность, чтобы обдумать различные варианты возможных решений, выбрать окончательный вариант и обосновать его. Мастерство, с каким будут проведены этапы всей этой работы, наиболее важно в деятельности инженера. Успех проекта в большой степени зависти от изобретательности инженера, потому что проектирование - в основном творческий процесс.

Для того чтобы найти наилучшее решение задачи, инженер вынужден прибегать к моделированию и математическому анализу, использовать и свой опыт, и квалификацию.

Математика позволяет анализировать конкретные величины, например, скорость и плотность автомобилей, с помощью абстрактных терминов и символов. Она также определяет систему условий, правил и способов обращения с этими символами, чтобы определить конкретные выводы, вытекающие из анализа этих символов. Математика универсальна. Другим мощным оружием инженера является моделирование. Моделирование это - экспериментирование, но не с реальными объектами, а с их моделями. Инженер должен поставить эксперимент так, чтобы получить максимум надежной информации при минимуме времени и затрат. При экспериментировании инженеру приходится проводить много измерений. От мастерства инженера при экспериментировании и измерениях зависит ценность его заключений по результатам наблюдений.

При обучении инженера большое значение придают изучению причин ошибок, возможных при ограниченном числе измерений, из-за влияния случайных величин, а так же важности тщательной проверки на первый взгляд очевидных заключений. Статистические методы анализа дают инженеру способы объективной обработки измерений и результатов экспериментов. В своей работе инженер использует различные устройства и инструменты, в том числе и ЭВМ. Они широко применяют в процессе моделирования. Моделирование с помощью ЭВМ позволяет инженеру исследовать гораздо большее число вариантов решения, гораздо быстрее и с меньшими затратами, чем это потребовалось бы при создании уменьшенной модели прибора или изготовления реального устройства с его последующим испытанием.

Одной из главнейших задач инженерного образования является развитие логического мышления. Инженер должен не только хорошо владеть словом, но и уметь выразить свою мысль математически и графически. Мастерство - это способность представить информацию в виде рисунков, эскизов и графиков. Для этого они изучают технику инженерного черчения. Следует отметить также способность работать с людьми разных профессий, чтобы обеспечит максимальную эффективность своей работы.

Инженерная точка зрения - это свойство, которое нельзя отнести ни к знаниям, ни к опыту. Постоянный и глубокий интерес к своей профессии, стремление выяснить все необходимые детали - одна из составляющих инженерной точки зрения. Умение инженера настоять на том, что любая часть проектируемого прибора доказала право на существование - также составляющая инженерной точки зрения.

Нужна инженеру и профессиональная этика. Выполняя свою работу, инженер берет моральные обязательства перед обществом. Еще одна черта инженера - готовность воспринять новое, необычное. Ум инженера должен быть гибким и легко воспринимать новые теории и приемы в инженерном деле.

В процессе работы инженер должен постоянно совершенствовать свое мастерство, не стоять на месте.

Таким образом, аппарат, которым квалифицированный инженер пользуется при решении задач, схематически показан на рисунке.



На нем перечислены те качества, которые инженер должен приобрести, чтобы приносить пользу обществу. Чем глубже будущий инженер овладел основами знаний своей специальности, приобрел опыт и мастерство, выработал свою точку зрения, тем эффективнее будет его работа


Обучение

Наконец, выбор специальности сделан. Теперь перед студентом стоит конкретная задача - стать хорошим специалистом. Современный специалист - это человек высокой культуры, широкой эрудиции.

Процесс обучения в вузе можно иллюстрировать следующей таблицей:

Срок обучения (годы)

Курс

Изучаемый материал

2Младший: 1, 2Общие технические дисциплины- база для овладения специальными знаниями
1,5Средний: 3+0,5 четвертого

Специальные предметы на уровне

учебника на это время

1,5Старший: 3,5…5

Специальные дисциплины по

учебнику плюс активное участие

в семинарах, НСО, конференциях.

Основной формой передачи информации от преподавателя к студенту является лекция. Это одна из старейших форм общения учителя с учеником и вместе с тем вполне современная. Лекции читают профессора, доценты, старшие преподаватели. Их содержанию и методике уделяется первостепенное внимание. Лекция никогда не утратит своего направляющего значения. Она позволяет раскрыть основные положения предмета, его развитие и перспективу в будущем, заострить внимание на основных методах исследования и проектирования.

Другая важная роль лекции - возможность сжатого изложения обширного материала. Наука и практика накопила очень много сведений, усвоение которых возможно лишь путем тщательного экономного отбора и обобщения, что помогает сделать лектор.

На лекции студент общается с крупным специалистом, знатоком своего предмета, имеющим широкий кругозор. Он имеет возможность почувствовать процесс развития мысли построения умозаключений. Лектор старается вовлечь студентов в свой творческий процесс, что требует от слушателей определенного напряжения умственных способностей, сосредоточенности, стремления понять и записать главное. Для этого необходимо, чтобы студент приходил на лекцию внутренне настроенным и подготовленным, для чего необходима проработка материала предыдущей лекции. Основное преимущество лекции в возможности полемики между лектором и студентом. Телевидение, магнитофонная запись с показом диапозитивов, макетов и другого наглядного материала дополняют лекцию.

Результатом прослушивания лекции для студентов является конспект. При написании конспекта хорошо оставлять свободные места, предусмотреть поля, так как при проработке материала с использованием книги бывает необходимо дополнить или скорректировать записи. Такая работа с конспектом приводит к глубокому пониманию и освоению предмета.

Главное учебное пособие - книга, рекомендованная лектором. К работе с книгой надо себя приучить со студенческих лет, так как в будущей деятельности специалиста книга и статья станут главными источниками информации, пополнения и обновления его инженерных и научных знаний.

В гуманитарных науках при утверждении тех или иных положений используется только качественная оценка, часто со ссылкой на авторитеты.

В технике же основа доказательств — чёткая логика, подкрепленная математическими выкладками с оговоркой допустимых условий и ее строгое решение. Поэтому при восприятии лекционного материала надо опираться лишь на логические или математические доказательства, ничего не принимая на веру. А если у студента возникают сомнения по поводу какого-то пункта лекции, то следует задавать вопросы или во время лекции, когда лектор делает такое предложение аудитории, и даже вступать с ним в полемику для получения более четкого доказательства, или во время перерыва. Очень важно приучиться правильно формулировать и даже записывать вопросы перед тем, как их задать.

Общий объем лекционных занятий в вузе достаточно велик, чем подчеркивается большая и важная роль этого вида учебного процесса.

Остальное учебное время распределяется между различными видами практических занятий, которые помогают закреплению теоретического материала курса, прививают навыки решения конкретных задач (например, задач конструирования РЭА), а в некоторых случаях изучается не изложенный в лекциях материал.

Число студентов на практических занятиях—академическая группа. Руководит занятиями обычно ассистент. На первых курсах занятия близки к школьной системе: все получают общую задачу, а один студент решает ее у доски под контролем преподавателя. При такой форме приведения занятий основным недостатком является отсутствие личной ответственности студентов за решение задачи. На старших курсах преобладает система самостоятельного изучения материала. Преподаватель кратко вводит в курс решения типовой задачи, а затем каждый студент (или группа студентов) получает исходные данные. Руководствуясь разработанными методиками, изучает детально ход решения, выбирает оптимальный вариант, наиболее соответствующий исходным данным, решает задачу и индивидуально отчитывается преподавателю, который сверяет ответ, и если есть расхождение, то с помощью наводящих вопросов находит ошибку в решении.

Для самоконтроля в методическом пособии проводятся контрольные вопросы.

Семинары являются практическими занятиями по - изучению общественно-политических дисциплин. Перед семинарами дается домашнее задание по изучаемой теме. Кроме устной информации, к семинару бывает необходимо готовить конспект или реферат по изучаемой теме. Семинары помогают полнее понять основные положения теории, развивают навыки работы студентов с учебной и научной литературой.

Практические занятия по иностранному языку близки по характеру проведения к семинарам.

Лабораторный практикум является очень важным видом занятий. Он прививает навыки эксперимента, умение обращаться с аппаратурой. В лабораториях, оснащенных современной аппа­ратурой, студенты на учебно-лабораторной базе кафедры, веду­щей дисциплину, могут самостоятельно экспериментально иссле­довать модель того или иною аппарата, детально изучить физическую сторону процесса, протекающего в реальных устройствах.

Эксперимент необходим:

1. для проверки правильности теорети­ческих положений;

2. если теоретическая модель исследуемого процесса недостаточно достоверна;

3. если экспериментальное ис­следование скорее и экономичнее теоретического.

Будущему инже­неру очень важно поверить в силу математических методов реше­ния, позволяющих анализировать явления, предсказывать их из­менение при изменении условий, проводить расчеты, необходимые при разработке образцов новой техники. Эта вера приходит в процессе сопоставления результатов теории и эксперимента. Сле­дует помнить о возможности расхождения теоретических и экспе­риментальных данных на допустимое значение погрешности, по­тому что при расчете и теоретическом анализе делается ряд до­пущений, не принимается во внимание влияние второстепенных факторов. Такой подход позволяет упростить модель явления, бо­лее отчетливо видеть сущность протекающих процессов, получить инженерное решение задачи и оценить значения ожидаемых па­раметров устройств. К тому же экспериментальное исследование всегда приближенное, так как в процессе измерений возможна ошибки.

Самое большое, к чему важно стремиться в лабораторной ра­боте, уменьшить несоответствие результатов теории и экспери­мента или установить причины этого расхождения, если оно ве­лико.

Для проведения лабораторной работы студент обязан изучить применяемое оборудование и приборы, технику безопасности при работе с ними, последовательность операций.

Чтобы проверить знание инструкций и теории, перед допуском студентов к лабораторной работе преподаватель или учебный лаборант проводят собеседование.

Работа считается выполненной, если погрешность эксперимен­та находится в допустимых пределах.

Особое значение при выполнении эксперимента и оценке пра­вильности результатов имеют теория вероятностей, математиче­ская статистика и математические методы планирования экспери­мента. Таким образом, в лаборатории студент попадает в мир физических явлений, получает возможность не только коли­чественно их анализировать и предсказывать, но и управлять ими.

Кроме того, существуют дисплейные классы, в которых студент работает с ЭВМ в режиме диалога студент—ЭВМ и вы­полняет соответствующую лабораторную работу.

После окончания изучения теоретического курса и его практи­ческого закрепления по специальным и общетехническим дисци­плинам, студентами выполняется курсовой проект или курсовая работа, разница между ними заключается в объемах расчетной и особенно графической частей. Задание выдается персонально каж­дому студенту преподавателем-консультантом. При выполнении курсового проекта (работы) необходимо:

· внимательно изучить исходные данные,

· обосновать выбранный метод,

· выполнить рас­чет с необходимыми графиками и эскизами,

· проанализировать проделанную работу и дать заключение.

Все это представляется в виде пояснительной записки.

Разработанные на основании расчетов конструкции, схемы уз­лов, приборов, технологическое оборудование графически оформ­ляются на стандартных листах ватмана по правилам технического черчения. Объем расчетной и графической частей проектов (ра­бот) устанавливается по каждой дисциплине отдельно.

После окончания курсового проекта (работы) проводится его защита на кафедре. Эта работа обычно принимается преподавателем-консультантом.

Защита курсового проекта (работы) — особая школа. Студент учится сжато на языке специалиста-инженера формулировать при помощи систем соотношений, таблиц, графиков, чертежей кон­струкций постановку задачи, обосновывать метод ее решения и отстаивать полученные результаты. Надо быть готовым к ответу на любой вопрос, имеющий отношение к проекту, так как в процессе работы студент использует знания, полученные при изучении не одной, а нескольких дисциплин. По ходу работы может появиться необходимость в знакомстве со специальной технической литературой использование при расчетах ЭВМ. Проектирование представляет собой соединение воедино знаний, навыков и умения. Оно развивает самостоятельность, стимулирует творчество молодого с