Вторичная переработка пластмасс как пример безотходной технологии
1. ПЛАСТМАССЫ
2. Использование отходов пластмасс путем повторной переработки
2.1 Измельчение отходов пластмасс
2.2 Сепарация, отмывка и разделение отходов
2.3 Переработка индивидуальных отходов
2.4 Переработка смесей отходов без разделения
2.4.1 Многокомпонентное литье
2.4.2 Получение вспененных изделий
2.5 Модификация смесей отходов
3. Повторное использование чистых, незагрязненных однотиповых отходов пластмасс
ЗАКЛЮЧЕНИЕ
Литература
Введение
Промышленность пластмасс развивается сегодня исключительно высокими темпами. Начиная с 60-х годов, производство полимеров, основную долю которых составляют пластмассы, удваивается через каждые 5 лет, и эти темпы роста в соответствии с прогнозом на период до 1990 г. сохранятся.
Характерным является опережающее развитие в промышленности пластмасс термопластичных материалов, составляющих в среднем около 70 % от общего количества производимых пластмасс. Одним из сопутствующих эффектов бурного роста промышленности пластмасс является одновременное увеличение количества пластмассовых отходов. Так, в ФРГ они составили в 1977 г. 1,2 млн. т, в США общие отходы полимеров в 1980 г. — 6,4 млн. т, а в Японии по прогнозу к 1985 г. превысят 4,4 млн. т/год. В Англии образуется в год около 800 тыс. т пластмассовых отходов, из которых примерно 300 тыс. т составляют промышленные отходы термопластов. В Швеции количество отходов только от переработки пластмасс превышает 11 тыс. т/год. В 1975 г. в ГДР отходы пластмасс составили 30—40 тыс. т, в Польше — около 20 тыс. т, а всего в странах-членах СЭВ — 200—250 тыс. т.
Таким образом, отходы пластмасс превратились в серьезный источник загрязнения окружающей среды и большинство стран резко интенсифицировали работы по созданию эффективных процессов утилизации или обезвреживания этих отходов. Это во многом связано и с тем, что пластмассовые отходы являются все возрастающим по масштабам вторичным сырьем, которое может служить как для получения изделий и композиций, так и в качестве источника топливных ресурсов. В условиях, когда сырьевые нефтехимические проблемы и проблемы энергетики очень остро стоят во многих странах мира, определенный вклад в решение этих вопросов может внести применение рациональных способов утилизации и обработки пластмассовых отходов.
По источникам образования отходы делятся на две большие группы: отходы производства и отходы потребления. Первая группа состоит из отходов, образующихся на стадии синтеза полимеров и при их переработке. Вторая группа включает в себя отходы технического назначения, источником образования которых являются различные области промышленности, применяющие пластмассы, и бытовые отходы, состоящие и основном из вышедших из употребления изделии (главным образом тара и упаковка).
Основную долю отходов, естественно, составляют термопласты, что соответствует их высокому удельному весу в общем выпуске пластмасс.
Задачи, стоящие в связи с утилизацией и обезвреживанием отходов пластмасс, существенно различаются. При разработке способов использования производственных отходов главные трудности связаны с их более низким качеством по сравнению с первичными пластмассами, наличием инородных включений, загрязнений и, в меньшей степени, с необходимостью разделения отходов на индивидуальные по видам пластмассы. При утилизации отходов второй группы большие сложности возникают при организации сбора, транспортировки и выделения пластмасс из общей массы производственно-бытовых отходов. Поскольку содержание в них пластмассовых отходов сравнительно невелико (2—12 %), трудоемкость выделения последних не всегда окупается. Это в свою очередь наталкивает на новые пути утилизации, связанные с совместной переработкой пластмассовых отходов с бытовым мусором. В случае же, если их удается отделить, дальнейшая обработка ничем не отличается от обработки производственных отходов пластмасс.
В настоящей работе основное внимание будет уделено вопросам утилизации или обезвреживания производственных отходов, образующихся на предприятиях по синтезу и переработке пластмасс. При этом более детально будет рассмотрено все то, что связано с отходами термопластичных материалов, которые преобладают в отходах пластмасс.
Неуклонный рост выпуска пластмасс вовсе не означает, что количество производственных отходов при этом пропорционально увеличивается. Современные тенденции создания малоотходной и безотходной технологии приводят к тому, что рост производства пластмасс неизбежно сопровождается совершенствованием технологических процессов, внедрением нового оборудования для синтеза и переработки.
В области синтеза пластмасс преимущественное развитие получают процессы полимеризации в массе (получение полиэтилена, полистирола) по сравнению с водно-дисперсионными методами. Все интенсивнее внедряются непрерывные процессы с высоким уровнем автоматизации и механизации, вытесняя периодические процессы. Возрастают единичные мощности технологического оборудования (полимеризаторов, сушилок, экструдеров и др.) и совершенствуется их конструкция. Улучшается качество сырья, используемого в процессах синтеза и конфекционирования.
В настоящее время наряду с совершенствованием технологии синтеза и переработки пластмасс все большее внимание уделяется разработке процессов и методов утилизации или обезвреживания пластмассовых отходов. При этом можно выделить следующие основные направления (1):
1) повторная переработка отходов или использование их в различных композициях;
2) термическое разложение с получением целевых продуктов;
3) термическое обезвреживание с регенерацией выделяемой теплоты;
1. Пластмассы
Пластмассы или полимеры и изделия из них нашли широкое применение во всех областях человеческой деятельности. Производство и использование пластмасс—одно из проявлений научно-технического прогресса, так как оно способствует снижению издержек на производство многих изделий, эксплуатационных расходов, повышению качества и улучшению их внешнего вида. Незначительная масса изделий из пластмасс позволяет снизить транспортные расходы и затраты труда при монтаже крупногабаритных конструкций. Физико-химические и механические свойства, а также экономические преимущества пластмасс обусловливают их важную роль в химизации хозяйства. Полимерные материалы заменяют различные традиционные материалы (металлы, стекло, бумагу, картон, кожу).
Мировой выпуск пластмасс с 1960 г. по 1980 г. возрос с 6,9 млн. т до 59,5 млн. т, или в 8,6 раза. За этот период выпуск пластических масс и синтетических смол в нашей стране вырос с 312 тыс. т до 3,6 млн. т, т. е. более чем в 11 раз. За годы одиннадцатой пятилетки производство пластмасс увеличилось еще в 1,7 раза и достигло 6,25 млн. т. У нас в стране потребность в пластмассах еще превышает возможности их производства, несмотря на высокие темпы развития. Это объясняется высоким эффектом их использования. Так, укрупненные расчеты эффективности производства и применения пластмасс показали, что выпуск 1 млн. т этих материалов дает экономию 0,6 млрд. долл. за счет снижения себестоимости, 1,0 млрд. долл. — за счет капитальных вложений и 0,5—0,6 млрд. чел.— час, что эквивалентно условному освобождению 300 тыс. работающих.
Одно из важнейших преимуществ пластмасс в сравнении с другими материалами — широкая возможность получения материалов с заданной комбинацией свойств. Пластмассы находят все большее применение в строительстве, машиностроении, электронной промышленности, производстве мебели, тары, упаковки, предметов бытового назначения, а также в сельском хозяйстве, на транспорте, в медицине и т. д.
В последние годы увеличился выпуск таких материалов, как термоэластопласты и фторуглеродные пластмассы. Термоэластопласты, представляющие собой новый класс материалов — блок-сополимеров, сочетают в себе свойства вулканизированных каучуков и термопластов. К ним относятся бутандиенстирольные, изопренстирольные, полиолефиновые, этиленвинилацетатные сополимеры. Термоэластопласты, подобно обычным пластмассам, могут быть переработаны методами экструзии, каландрирования, термоформования и литья под давлением.
Фторопласты (полимеры на основе политетрафторэтилена, тетрафторэтилена и гексафторпропилена) обладают высокой коррозионной устойчивостью, термостабильностью и другими ценными свойствами, которые способствуют их широкому применению в машиностроении, электротехнике и электронике, химической промышленности, в самолетостроении, космонавтике и приборостроении, а также для бытовых нужд.
В качестве строительных материалов пластмассы применяются уже более 50 лет. Их использование в строительстве за рубежом достигло значительных размеров. В ФРГ, например, на долю строительства приходится 25%, в США—20%, в Великобритании—20%, во Франции—18%, в Японии—13%, в Италии—10% всего потребления пластмасс.
Пластмассы не только заменяют или дополняют традиционные материалы, но и способствуют развитию новых, более производительных способов строительства. Преимущества пластмасс перед традиционными материалами выражаются в облегчении конструкций, упрощении монтажных работ, снижении транспортных расходов, расширении возможностей применения типовых деталей, улучшении тепло- и звукоизоляции и в конечном итоге—сокращении сроков и удешевлении капитального строительства.
Анализируя темпы роста производства пластических масс у нас в стране и за рубежом, можно предположить, что эта подотрасль химической промышленности остается наиболее быстро растущей на ближайшее десятилетие. Среди синтетических смол и пластмасс первое место по объему выработки во всем мире занимает полиэтилен. По прогнозным данным, до 2000 г. его доминирующее место сохранится.
Достоинством пластмасс является меньший расход энергии на их производство, чем на производство конкурирующих с ними материалов. Так, на производство 1 кг распространенных видов пластмасс расходуется около 10 МДж энергии, стали — 20 - 50, алюминия — 60 - 270, стекла бутылочного — 30 - 50 МДж. Доля стоимости энергии в издержках производства пластмасс составляет в среднем 2%, в производстве стали - 4, стекла бутылочного - 5, цемента - 15 и алюминия первичного - 23%. Энергоемкость изготовления изделий из пластмасс также значительно ниже. Например, расход энергии на изготовление стеклянных бутылей в 20—30 раз выше, чем этот показатель при производстве пластмассовых сосудов такой же емкости.
Технология производства пластмасс развивается по пути совершенствования традиционных методов, разработки и внедрения новых методов, в первую очередь для производства крупнотоннажных продуктов: полиэтилена, полипропилена, поливинилхлорида, полистирола. Наблюдается тенденция к увеличению степени конверсии, например, с помощью более эффективных инициаторов реакции, к повышению единичной мощности агрегатов, проведению реакций в более мягких условиях, совмещению стадии полимеризации в присутствии более активных катализаторов с процессом формования изделий.
Традиционные виды сырья заменяются новыми. Так, если раньше в качестве сырья использовали главным образом карбид кальция, каменноугольную смолу и коксовый газ, то в настоящее время основным органическим сырьем стали продукты переработки нефти и природного газа. Отмечается, что около 5% нефти, используемой в промышленности развитых стран, расходуется в нефтеперерабатывающей промышленности, из них около 50%—для производства пластмасс.
Все большее применение приобретают новые источники энергии для нагрева, отверждения и полимеризации пластмасс, такие, как радиоволны, ультразвук и радиация. Улучшение физико-химических свойств пластмасс достигается повышением чистоты исходных мономеров «сшивкой» полимерных цепей (в том числе и радиационным методом), введением сомономеров, различных наполнителей и добавок. Значительно увеличилось производство так называемых усиленных пластмасс—стеклопластиков, изготавливаемых на основе ненасыщенных полиэфиров и стекловолокна.
Увеличение поступающих в окружающую среду отходов пластмасс представляет значительную экологическую помеху. Отходы пластмасс образуются на всех стадиях их производства и использования. Из общего количества получаемых отходов около 60% образуется при производстве упаковочных материалов; производственные и промышленные отходы составляют 17%, оставшееся количество приходится на долю бытовых отходов. Доля основных типов термопластов в промышлепных отходах (в %) по годам приведена ниже:
1970 г. | 1975 г. | 1980 г. | |
Полиэтилен низкой плотности | 31,7 | 31,9 | 32,0 |
Полиэтилен высокой плотности | 6,8 | 7,8 | 8,5 |
Полипропилен | 8,4 | 10,9 | 13,2 |
Полистирол | 19,4 | 18,6 | 17,9 |
Поливинилхлорид | 33,7 | 30,8 | 28,4 |
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Выполнение природоохранных требований по обращению с опасными отходами в ООО "МашСталь" в соответствии с законодательством Российской Федерации
АНОО ДПО УЦ «Перспектива»Реферат на тему:"Выполнение природоохранных требований по обращению с опасными отходами в ООО «МашСталь» в со
- Высокомолекулярные флокулянты в процессах очистки природных и сточных вод
СОДЕРЖАНИЕВВЕДЕНИЕГЛАВА 1. ВЫСОКОМОЛЕКУЛЯРНЫЕ ФЛОКУЛЯНТЫ В ПРОЦЕССАХ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД1.1 Очистка природной воды коагуля
- Газохроматографический метод определения загрязненности воздуха
Расширение масштабов производственной деятельности человека приводит к тому, что ее влияние на состояние окружающей среды становится
- Геохимический круговорот веществ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИКУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТКОНТРОЛЬНАЯ РАБОТАпо экологиистудента заочного
- Геоэкологическая характеристика фосфора
«...Да! Это была собака, огромная, черная, как смоль. Но такой собаки еще никто из нас, смертных, не видывал. Из ее отверстой пасти вырывалос
- Геоэкологические проблемы трубопроводного транспорта
Федеральное агентство по образованиюГОУ ВПО «Волгоградский государственный университет»Факультет управления и региональной экономи
- Гигиена воздуха
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮГосударственное образовательное учреждение высшего профессионального образования“Санкт-Петерб
Copyright © https://referat-web.com/. All Rights Reserved