Вопросы лазерной безопасности
Реферат студента Майорова Павла Леонидовича, группа РЛ 3-81.
Московский ордена Ленина, ордена Октябрьской Революции и ордена Трудового Красного Знамени
Государственный технический университет имени Н. Э. Баумана, Факультет РЛ
1. Физиологические эффекты при воздействии лазерного излучения на человека.
Непосредственное воздействие на человека оказывает лазерное излучение любой длины волны, однако в связи со спектральными особенностями поражаемых органов и существенно различными предельно допустимыми дозами облучения обычно различают воздействие на глаза и кожные покровы человека.
1.1. Воздействие лазерного излучения на органы зрения
Основной элемент зрительного аппарата человека — сетчатка глаза — может быть поражена лишь излучением видимого ( от 0.4 мкм ) и ближнего ИК-диапазонов ( до 1.4 мкм ), что объясняется спектральными характеристиками человеческого глаза ( рис. 1 ). При этом хрусталик и глазное яблоко, действуя как дополнительная фокусирующая оптика, существенно повышают концентрацию энергии на сетчатке, что, в свою очередь, на несколько порядков понижает максимально допустимый уровень ( МДУ ) облученности зрачка.(1)
1.1.1. МДУ прямого облучения сетчатки
Кроме длины волны l, необходимо учитывать также длительность воздействия светового излучения. При очень коротких импульсах ( когда не успевают сработать механизмы теплопроводности в области сетчатки ) нормируют плотность энергии для видимого излучения ( 0.4 Рисунок 1. Спектральные характеристики глаза: Во всех рассматриваемых далее случаях переходная область спектра — от темно-красного ( l>700 нм ) до полностью невидимого ближнего ИК-излучения ( l<1050 нм ) — характеризуется монотонным повышением МДУ от минимального значения ( для темно-красного излучения ) до максимального ( для полностью невидимого ИК-излучения ) по закону С4=10(l-700)/500. Приведенные данные по МДУ охватывают область наиболее критических значений параметров облучения зрачка глаза, когда в интервале от 10-9 до 10 с причиной повреждения сетчатки является тепловое действие сфокусированного света при прямом наблюдении лазерного пучка, тогда как сверхкороткие лазерные импульсы вызывают в основном термоакустическое воздействие — протоплазма клеток из-за быстрого разогрева закипает и разрывает оболочку. В этом случае нормируют плотность мощности: для видимого излучения МДУ составляет 5×106 Вт/м2, для ИК-излучения — 5×107 Вт/м2. Длительное ( Dt>10 с ) прямое воздействие лазерного излучения на сетчатку приводит в основном к фотохимическим процессам ее разрушения. Чтобы избежать этого (как и в случае сверхкоротких импульсов), нормируют энергетическую освещенность (экспозицию). Для зеленого (l=550 нм) и более коротковолнового (l>400 нм) видимого света МДУ составляет 100 Дж/м2. Что касается "теплых" цветов (550 Сверхдлительное (Dt>103¸104 c) прямое воздействие лазерного излучения характеризуется малым значением МДУ, а именно 0.01 Вт/м2 для сине-зеленого (0.4 На перечисленные МДУ облучения ориентируются при однократном воздействии на глаз прямого лазерного излучения, фокусируемого хрусталиком в очень незначительное пятно на сетчатке. При наличии последовательности импульсов не только ни один из них, но и усредненная облученность не должны превышать МДУ. При усреднении воздействия последовательности импульсов с длительностью Dt<10 мкс и частотой повторения f>1 Гц МДУ одиночного импульса должен быть уменьшен в С5 раз: (1.1) Если длительность отдельных импульсов Dt в последовательности превышает 10 мкс ( а частота следования f>1 Гц), то для импульса длительностью NDt за ограничение облученности принимают (1/N)-ю часть МДУ. Наиболее сложно определить МДУ для повторяющихся серий, состоящих из определенного числа импульсов. Когда в серии не более 10 импульсов, ее приравнивают к одному эквивалентному импульсу. При этом: если Dt серии меньше 10 мкс, то за длительность эквивалентного импульса принимают длительность самого короткого импульса в серии, а за энергетическое воздействие — суммарное (полное) энергетическое воздействие всей серии; если Dt серии больше 10 мкс, то за длительность эквивалентного импульса принимают суммарную длительность парциальных импульсов, а за энергетическое воздействие — суммарное энергетическое воздействие всей серии. Если в серии более 10 импульсов, то МДУ рассчитывают как для одного, якобы непрерывного импульса, охватывающего всю последовательность. 1.1.2. МДУ для наружных покровов глаз человека Невидимое УФ (0.2 Плотность мощности для сверхкоротких (менее 1 нс) импульсов почти одинакова в обоих диапазонах: 30 ГВт/м2 в УФ области и 100 ГВт/м2 в ИК области (1.4 мкм При больших временах воздействия ситуация наиболее проста для жесткого (200 Более сложна система задания МДУ для узкого участка УФ излучения с 302.5 МДУ для ближней УФ области (315 В ИК области МДУ облучения наружных покровов почти не зависит от длины волны и составляет: для сверхкоротких (Dt<1 нс) импульсов 100 ГВт/м2; для гигантских ( 1 нс Надо отметить, что такие значения справедливы и для дальней ИК области (0.1 1.1.3. Представление МДУ облучения как поверхности в координатах l — Dt В 825-й публикации МЭК полностью, хотя и не всегда с достаточно высокой точностью, определены МДУ облучения роговой оболочки глаза человека прямым (то есть направленным непосредственно из оптической системы, а не рассеянным на каких-либо шероховатых поверхностях) лазерным излучением. Для удобства практического применения эти рекомендации МЭК представлены в виде таблицы 1.1. В результате, во первых, появляется возможность достаточно просто (хотя и приближенно) определить численные значения МДУ при прямом облучении глаза человека лазерным излучением. При измерении следует лишь помнить следующие рекомендации МЭК по пространственному усреднению облученности: для 0.2 Во вторых, таблица 1.1 свидетельствует о том, что в разных спектральных поддиапазонах лазерное воздействие частично аддитивно. Эта ситуация относится к двух- и более волновым лазерам, в основном, к лазерным приборам и установкам, в которых используется лазерное излучение разных длин волн. В соответствии с рекомендацией МЭК весь диапазон длин волн лазерного излучения делят на четыре поддиапазона, внутри которых лазерное излучение полностью аддитивно (как для глаз: так и для кожных покровов): поддиапазон — УФ-С и УФ-В, 200 поддиапазон — УФ-А, 315 поддиапазон — весь видимый и ИК-А, 0.4 поддиапазон — ИК-В и ИК-С, 1.4 Кроме того, всегда суммируют воздействия облучений 2-го и 4-го поддиапазонов. Аналогичное суммирование проводят и при совместном воздействии на кожные покровы лазерных излучений 2-го и 3-го поддиапазонов. Естественно, что принимать во внимание эффект аддитивного воздействия имеет смысл лишь при близких к МДУ значениях облучения для каждой из генерируемых длин волн. К сожалению, 825-я публикация МЭК не дает аналитического выражения для определения МДУ аддитивного облучения, а лишь указывает на необходимость особой осторожности, если длительности воздействия существенно различаются (например, совместное действие импульсного и непрерывного излучений). В случае, если длительности импульсов или время экспозиции соизмеримы (имеют один порядок), то полагают, что парциальное (на одной длине волны) облучение пропорционально МДУ для данного излучения, то есть суммарное относительное облучение не должно превышать единицы: (1.2) И, наконец, МЭК настоятельно напоминает об опасности любого облучения, в том числе лазерного, подчеркивая, что МДУ является не порогом безопасности, а лишь усредненным значением (определенным на основе многочисленных экспериментов) уровня опасности повреждения органов зрения (и кожного покрова) человека. Таблица 1.1 МДУ прямого облучения глаз человека С1=5.6×103(Dt)0.25; T1=100.8(l-295)-15; C2=100.2(l-295); T2=101+0.02(l-550); C3=100.015(l-550); C4=10(l-700)/500; С6=18(Dt)0.75; 1.1.4. МДУ облучения глаз рассеянным лазерным излучением Рисунок 2. Предельный угол видения (предполагаемый угол поля зрения): На практике наиболее вероятно именно рассеянное лазерное облучение. В этом случае важно при определении МДУ облучения перенормировать плотность излучения в диапазоне 0.4 МДУ облучения глаза протяженным источником с угловым размером aизл>a приведены в таблице 1.2. Напомним, что при измерении энергетической яркости рассеянного (точнее: со значительным углом расходимости) излучения ее усреднение при измерении МДУ следует выполнять по углу a (см. рисунок 2). Кроме того, поскольку глаза устроены так, что не пропускают к сетчатке УФ и ИК излучение с l>1.4 мкм, то в этих диапазонах разница между МДУ, указанным в таблице 1.1, и МДУ, указанным в таблице 1.2, отсутствует. Таблица 1.2 МДУ облучения глаз человека рассеянным лазерным излучением ВведениеЕжегодно лесные и лесоторфяные пожары наносят ущерб экономике, который складывается из безвозвратных потерь лесного фонда, за ВведениеДля начинающего свое дело – это одна из самых актуальных проблем. Понятие «мошенничество» пришло к нам из глубины веков, первое ПЛАНВСТУПРОЗДІЛ 1. ВИМОГИ, ЯКІ ВИСУВАЮТЬСЯ ДО БУДІВНИЦТВА МІСТ, ПРОМИСЛОВИХ ОБ'ЄКТІВ І КОМУНАЛЬНО-ЕНЕРГЕТИЧНИХ СИСТЕМ1.1 Основі вимоги д СОДЕРЖАНИЕВВЕДЕНИЕ1. СУЩНОСТЬ И ЗНАЧЕНИЕ СТРАХОВАНИЯ, ЕГО ФОРМЫ, ОБЪЕКТ СТРАХОВАНИЯ.2. АНАЛИЗ СТРАХОВОГО РЫНКА РЕСПУБЛИКИ БЕЛАРУСЬ.3. С «Уж я ль не знала бессонницы», — писала, в одном из своих стихотворений Анна Ахматова. Похоже, в наш бурный век ночи без сна перестали бы В древних цивилизациях жизненно важным фактором было управление водными ресурсами с целью обеспечения орошения и водоснабжения. Древ Министерство по чрезвычайным ситуациямРеспублики БеларусьГосударственное учреждение образования«Командно-инженерный институт»Ка Copyright © https://referat-web.com/. All Rights Reserved
t1 — относительное пропускание глазной среды;
t2 — произведение пропускания глазной среды на поглощение всеми слоями сетчаткиДлина МДУ волны Еди- Усло- При длительности излучения Dt, с l, нм ница изме-рения вие <10-9 От 10-9 до 10-7 От 10-7 до 1.8×10-5 От 1.8×10-5 до 5×10-5 От 5×10-5 до 10 От 10 до 103 От 103 до 104 От 104 до 3×104 От 200 до ГВт/м2 — 30 — — — — — — — 302.5 (УФ-С) Дж/м2 — — 30 30 30 30 30 30 30 От 302.5 Дж/м2 При Dt£T1 — C1 C1 C1 C1 — — — до 315 (УФ-В) Дж/м2 При Dt>T1 — C2 C2 C2 C2 — — — Дж/м2 — — — — — — C2 C2 C2 ГВт/м2 — 30 — — — — — — — От 315 до 400 Вт/м2 — 3×1010 — — — — — 10 10 (УФ-А) Дж/м2 — — C1 C1 C1 C1 104 — — От 400 Вт/м2 — 5×106 — — — — — — 10-2 до 550 Дж/м2 — — 5×10-3 5×10-3 C6 C6 100 100 — От 550 до 700 Дж/м2 При Dt£T2 — — — — — С6 С6 — Дж/м2 При Dt>T2 — — — — — С3×102 С3×102 — Дж/м2 — — 5×10-3 5×10-3 С6 С6 — — — Вт/м2 — 5×106 — — — — — — С3×10-2 От 700 до Дж/м2 — — 5С4×10-3 5С4×10-3 С4С6 С4С6 С4С6 — — 1050 (ИК-А) Вт/м2 — 5С4×106 — — — — — 3.2С4 3.2С4 От 1050 до Дж/м2 — — 5×10-2 5×10-2 5×10-2 5С6 5С6 — — 1400 (ИК-В) Вт/м2 — 5×107 — — — — — 16 16 От 1400 Дж/м2 — — 100 С1 С1 С1 — — — до 106 (ИК-С) Вт/м2 — 1011 — — — — 103 103 103
1 — 0.012 рад;
2 — 0.00885 рад;
3 — 0.00025(Dt)-0.17 (при 1050£l<1400 нм);
5 — 0.015× (Dt)0.21 (при 400£l<1400 нм);
6 — 0.24 рад.Длина МДУ волны Единица Условие При длительности экспозиции Dt, с l, нм изме-рения <10-9 От 10-9 до 10-7 От 10-7 до 10 От 10 до 103 От 103 до 104 От 104 до 3×104 От 200 ГВт/м2 — 30 — — — — — до 302.5 Дж/м2 — — 30 30 30 30 30 От 302.5 до 315 Дж/м2 При Dt£T1 — C1 C1 — — — Дж/м2 При Dt>T1 — C2 C2 — — — Дж/м2 — — — — C2 C2 C2 ГВт/м2 — 30 — — — — — От 315 Вт/м2 — 3×1010 — — — 10 10 до 400 Дж/м2 — — C1 C1 104 — — От 400 Вт/м2 ср — 1011 — — — — 21 до 550 Дж/м2 ср — — С7 С7 2.1×105
Категории:
Подобное: