Волоконно-оптические системы связи
В настоящее время ускорение технического прогресса невозможно без совершенствования средств связи, систем сбора, передачи и обработки информации. В вопросах развития сетей связи во всех странах большое внимание уделяется развитию систем передачи и распределения (коммутации) информации.
Наиболее широкое распространение в последнее время получили многоканальные телекоммуникационные системы (ТКС) передачи с импульсно-кодовой модуляцией (ИКМ), работающие по волоконно-оптическим кабелям (ОК).
В настоящее время волоконно-оптическая связь широко применяется не только для организации телефонной связи, но и для кабельного телевидения, видеотелефонии, радиовещания, передачи данных и т.д.
Дальнейшему развитию методов и аппаратуры волоконно-оптических систем передачи (ВОСП) способствуют уникальные свойства волоконно-оптических линий связи (ВОЛС):
- малые затухание и дисперсия оптических волокон (ОВ);
- гибкость в реализации требуемой полосы пропускания;
- широкополосность;
- малые габаритные размеры и масса ОВ и ОК;
- невосприимчивость к внешним электромагнитным полям;
- отсутствие искрения при обрывах, коротком замыкании и ненадёжных контактах;
- допустимость изгиба световода под малым радиусом;
- низкая стоимость материала световода;
- возможность использования ОК, не обладающих электропроводностью и индуктивностью;
- высокая скрытность связи;
- высокая прозрачность ОВ;
- возможность постоянного усовершенствования системы связи по мере появления источников с улучшенными характеристиками.
Кроме того, отечественными и зарубежными фирмами разработана и продолжает разрабатываться широкая номенклатура волоконных световодов и оптических кабелей для ВОСП различных предназначений и структур. Для широкополосных систем дальней связи, в частности магистральных, изготавливаются кабели с одномодовыми волокнами, т.е. волокнами, в которых распространяется лишь основной тип колебаний. Здесь одновременно предъявляются и наиболее высокие требования по снижению затухания и дисперсионных искажений. Изготавливаются волокна, обеспечивающие сохранение поляризации в распространяющемся оптическом излучении.
Такие кабели, предназначенные для магистральной связи, весьма сложны в изготовлении и относительно дороги. Кроме того, их использование предусматривает сочетание с лазерными передающими оптическими модуляторами (ПОМ), к которым также предъявляются повышенные требования в отношении спектральной чистоты излучения, высокой стабильности всех характеристик излучения и т.д. Например, АО “Самарская оптическая кабельная компания” для использования на Взаимоувязанной сети связи (ВСС) производит оптические кабели ОКЛ, кабели ОКГТ-4, встраиваемые в грозозащитный трос и самонесущие кабели ОКС-26. В них используется оптические волокна фирмы Corning – крупнейшего производителя ОВ в мире.
В последнее время на ВСС широко внедряются ТКС синхронной цифровой иерархии (СЦИ, англ. SDH), работающих также по ВОЛС.
SDH – это набор цифровых структур, стандартизированных с целью транспортирования нужным образом адаптированной нагрузки по физическим цепям. В SDH реализуется комплексный процесс перемещения информации, включающей в себя не только передачу сигналов, но и глубокую автоматизацию функций контроля, управления и обслуживания (ОАМ – Operation, Administration and Manaqement).
SDH разработана с учетом недостатков РDH и по сравнению с последней имеет следующие преимущества:
1) Возможность передачи широкополосных сигналов, предполагаемых в будущем.
2) Синхронизация сети и синхронная техника мультиплексирования.
3) Использование синхронной схемы передачи с побайтным мультиплексированием.
4) Временное выравнивание за счет побайтового двухстороннего стаффинга.
5) При мультиплексировании осуществляется синхронизация под входные сигналы.
6) Возможность плезиохронной работы при необходимости. В этом случае стаффинг осуществляется за счет двустороннего побитового выравнивания.
7) SDH удачно сочетается с действующими системами РDH и позволяет существенно улучшить управляемость и эффективность этих сетей.
8) Мультиплексирование с использованием техники указателей (пойнтеров). Фазовые соотношения между циклом SТМ и полезной нагрузкой записывается с помощью указателей. Таким образом, доступ к определенному каналу возможен за счет использования указателя.
9) Возможность ввода/вывода компонентных сигналов на любом пункте.
10) Встроенная система оперативного переключения сокращает потребности в аппаратуре, улучшает производительность и надежность сети, позволяет выполнять кросс- коммутацию потоков на различных уровнях согласно планируемой конфигурации сети, а также ускоряет процедуры восстановления сети в аварийных ситуациях.
11) SDH обеспечивает надежную трассу передачи системой указателей, которая способствует безупречной работе даже в случае, когда узлы несинхронизированы. Для стыковки сигналов РDH применяется юстификация по битам. Все это вместе гарантирует исключительно низкий коэффициент ошибок по битам.
12) Кольцевые сети SDH обеспечивают экономичное резервирование маршрута и оборудования без сложных схем резервирования сети.
13) Высокая надежность и самовосстанавливаемость сети с использованием резервирования и автоматического переключения в обход поврежденного участка за счет полного мониторинга сети и использования кольцевых топологий.
14) Простота перехода с одного уровня SDH на другой. Структура мультиплексированного сигнала SТМ – N идентична структуре сигнала SТМ-1. Скорости транспортировки сигналов SТМ – N определяются умножением базовой скорости 155,52 Мбит/с на N, поэтому при мультиплексировании не требуется формирования нового цикла.
15) Гибкая структура цикла предоставляет возможность для наращивания пропускной способности системы.
16) Прозрачность сети SDH для передачи любого трафика, обусловленная использованием виртуальных контейнеров.
17) Возможность прямого преобразования электрического сигнала в оптический без сложного линейного кодирования. Управление за счет контроля количества ошибок на различных участках передачи информации.
18) Единый всемирный стандарт для производителей оборудования, высокий уровень стандартизации SDH технологий и стандартизованный линейный код NRZ обеспечивают совместимость мультиплексного и линейного оборудования разных фирм – изготовителей.
19) Предоставление услуг по требованию, обеспечиваемое гибкими элементами сети и эффективным управлением сетью.
20) Сокращение издержек технической эксплуатации (ТЭ) и технического обслуживания (ТО) вследствие широких возможностей сетевого управления в системах SDH. Управление функциями передачи, резервирования, оперативного переключения, ввода/вывода и контроля на каждой станции и во всей транспортной системе осуществляется программно и дистанционно по каналам, встроенным в цикл STM, полная автоматизация процессов эксплуатации сети SDH, радикально повышает её гибкость и надежность, а также качество связи.
Наличие служебных битов в составе передаваемых структур позволяет:
- контролировать их прохождение по сети и обеспечивать качество услуги “абонент-абонент”;
- контролировать состояние элементов сети;
- организовать управление сетью (реконструкция, самовосстановление при авариях), что создает предпосылки для достижения её высокой надежности и живучести.
Таким образом, на сетях связи всех уровней на ВОЛС некоторое время будут совместно находиться на эксплуатации ВОСП РDH и SDH. Такое положение сохранится до полного вытеснения систем РDH системами SDH. Поэтому на данном этапе развития ВСС весьма важным является умение проектировать цифровые оптические линии передачи и оценивать качество их функционирования.
1 Выбор и обоснование проектных решений
1.1 Трасса кабельной линии передачи
Исходя из задания на ДП волоконно-оптическая линия связи должна быть построена способом подвески ОК на опорах высоковольтной линии передачи.
Такое решение принято на основании следующих особенностей сооружения ВОЛС по линиям электропередачи (ЛЭП) по сравнению с традиционным способом прокладки кабеля в грунт:
-уменьшение сроков строительства;
-отсутствие необходимости отвода земель и согласования с землепользователями, центральными и местными административными органами;
-уменьшение количества повреждений в районах городской застройки и промышленных зон;
-снижение капитальных и эксплуатационных затрат в районах с тяжелыми грунтами.
Трасса ВОЛС определяется наличием существующих линий электропередачи.
Трасса волоконно-оптической линии передачи (ВОЛП) разделяется на десять регенерационных участка (РУ):
РУ – 1 Волгоград – р. п. Городище - 15,9 км
РУ - 2 Городище – Иловля - 79,9 км.
РУ – 3 Иловля – Фролово - 74,1 км
РУ – 4 Фролово – Михайловка - 53,6 км
РУ – 5 Михайловка – Даниловка - 85,7 км
РУ – 6 Даниловка -Котово - 61,8 км
РУ – 7 Котово – Камышин - 60,2 км
РУ – 8 Камышин – Дубовка - 146 км
РУ – 9 Дубовка – Котлубань - 52,6 км
РУ – 10 Котлубань – Волгоград - 53,6 км.
Общая протяженность трассы составляет 683,4 км.
Трасса проектируемой ВОСП пересекает следующие естественные препятствия, электрифицированные и не электрифицированные железные дороги; магистральные автомобильные дороги; асфальтированные и грунтовые дороги; линии связи; трубопроводы и нефтепроводы; садоводческие постройки; огороды; реки, овраги.
Все переходы и пересечения выполняются в соответствии с электрическими и механическими расчетами на существующих опорах ВЛ 220кВ. Расположение ВОК в пролетах выше фазных проводов и, соответственно, габарит по вертикали от ВОК до пересечения больше, чем между линейными проводами и инженерными сооружениями, перечисленными выше.
Спуск с опор ВЛ и заходы в здания производятся в соответствии с правилами проектирования, строительства и эксплуатации волоконно-оптических линий связи на воздушных линиях электропередачи напряжением 110 кВ и выше, (1).
Подробное описание проектируемой трассы ВОЛС возможно только после натурного обследования.
1.2 Характеристика оконечных и промежуточных пунктов
Существующая внутризоновая сеть Волгоградской области построена по радиальному принципу с преимущественным тяготением трафика от районов к областному центру. Исходные данные на строительство сети SDH разработаны с учетом переключений существующих внутризоновых каналов связи и их увеличением для нужд внутризоновой сети Волгоградской области с организацией кольца Волгоград – Городище – Иловля – Фролово – Михайловка – Даниловка – Котово – Камышин – Дубовка – Котлубань – Волгоград.
По проектируемой трассе расположены два города областного подчинения (г. Михайловка, г. Камышин) и два районных центра (р. п. Даниловка, г. Котово), в которых сосредоточены предприятия, такие как Себряковский цементный завод, Камышинский х/б комбинат, Кузнечно-литейный завод, Котовский завод электролампового оборудования, предприятия по переработке сельскохозяйственной продукции (мясомолочного животноводства, зерна, овощей), предприятия пищевой промышленности и нефтегазодобывающей промышленности.
В перечисленных районах сосредоточено 443,8 тыс. населения.
1.3 Обоснование и расчет уровня ТКС
На существующих ВОЛС внутризоновой сети Волгоградской области предусмотрена замена оборудования ПЦИ типа ФК-34, ФК-35 на оборудование СЦИ уровня STM-4, переносимого с ГТС г. Волгограда с частичным их дооборудованием и постановкой двух новых мультиплексоров в объеме линейных, станционных и энергосооружений.
Мультиплексоры типа Alcatel 1651, снимаемые с ГТС г. Волгограда в соответствии со схемой организации связи предусматривается установить на АМТС г. Волгограда и в зданиях РУС р. п. Городище, р. п. Иловля, г. Фролово, г. Михайловка, р. п. Даниловка, г. Котово.
В высвобождаемых с сети ГТС г. Волгограда мультиплексорах 1651 SM, оптимизированных на длину волны 1,33 мкм., при их переносе на внутризоновую сеть предусматривается замена агрегатных плат на агрегатные платы, оптимизированные на длину волны 1,55 мкм. Исключение составляет участок ВОЛС Волгоград – Городище протяженностью 15, км, на котором агрегатные платы в мультиплексорах Alcatel1651, оптимизированные на длину волны 1,33 мкм не заменяется.
Для определения необходимого числа каналов при проектировании используем методику кольцевой сети или линии передачи, соединяющей несколько АТС, при неизвестных количествах каналов (или потоков 2 Мбит/с) между АТС.
На участке ВОЛС Камышин – Дубовка протяженностью 146 км проектом предусматривается установка двух новых мультиплексоров типа Alcatel 1660, в состав которых входят оптические усилители, позволяющие перекрыть затухание, вносимое ОК.
Для ввода-вывода трибутарных потоков Е1, превышающих количество 63Е1, в г.г. Волгограде и Михайловке также предусматривается установка мультиплексоров типа Alcatel 1641, переносимых из г. Волгограда.
Для организации каналов т. ч. и каналов n х 64 кбит/с для нужд корпоративной сети ОАО "Волгоградэлектросвязь" и для предоставления услуги аренды каналов сторонним юридическим лицам и операторам проектом предусматривается разбивка потоков Е1 с помощью функций кросс-коннекции.
1.4 Выбор и характеристика транспортной системы
Схема распределения потоков разработана с учетом расширения ГТС и СТС Волгоградской области, организации потоков для мультиплексорной сети ПД ОАО "Волгоградэлектросвязь", для каналов радиовещания, для сетей сторонних операторов и перспективы развития внутризоновой сети.
Для организации на внутризоновой сети синхронного кольца предусматривается оборудование SDH уровня STM-4 со скоростью передачи 622 Мбит/С по схеме резервирования 1+1. В качестве оборудования предусматривается оборудование мультиплексоров типа Alcatel 1651, Alcatel 141.
Для исключения строительства НРП в связи с большой протяженностью участка Камышин – Дубовка (L=146 км) предусматривается в РУС Камышин и РУС Дубовка установить новые мультиплексоры OPTINEX-1660SM с входящими в их состав оптическими усилителями.
1.4.1 Транспортные системы SDH
Новые возможности цифровых коммутаторов и технических средств транспортной среды (возможность реализации мощных транспортных сетей на базе ВОЛС и мультиплексоров SDH: терминальных, ввода/вывода, с кросс-коммутацией) с перспективой увеличения пропускной способности без существенной реконструкции, способность SDH к глубокой автоматизации и контролю элементов сети и качества услуг, а также к автоматическому и программному управлению сложными конфигурациями.
Достижения современной техники коммутации и передачи сместили акценты в распределении затрат. Стоимость канало-километра стремительно снижается, а стоимость точки коммутации если не растет, то снижается значительно меньшими темпами. С другой стороны, появление SDH и мощных мультиплексоров с кросс-коммутацией превратили сеть передачи по сути в распределённый коммутатор.
Транспортная сеть или система (ТС) может охватывать участки зоновых линий передачи. ТС органически объединяет сетевые ресурсы, которые выполняют функции передачи информации, контроля и управления (оперативного переключения, резервирования и т.д.). ТС является базой для всех существующих и планируемых служб интеллектуальных, персональных и других сетей. Информационной нагрузкой ТС SDH являются сигналы PDH. Аналоговые сигналы предварительно преобразуются в цифровую форму с помощью имеющегося на сети аналого-цифрового оборудования. Универсальные возможности транспортирования разнородных сигналов достигаются в SDH благодаря использованию принципа контейнерных перевозок. В ТС SDH перемещаются не сами сигналы нагрузки, а новые цифровые структуры – виртуальные контейнеры, в которых размещаются сигналы нагрузки. Сетевые операции с контейнерами выполняются независимо от их содержания. После доставки на место и выгрузки из виртуальных контейнеров (VC) сигналы нагрузки обретают исходную форму. Поэтому ТС SDH является прозрачной для любых сигналов.
ТС SDH содержит информационную сеть и систему обслуживания (6).
Таблица 1.1 – Соответствие слоёв SDH с информационными структурами.
Слои | Информационные структуры | |
Каналы | ||
Контейнеры С | ||
Тракты | низшего порядка | Виртуальные контейнеры VC-12, VC-2 |
Субблоки TU и их группы TUG | ||
высшего порядка | Виртуальные контейнеры VC-3, VC-4 | |
Административный блок AU | ||
Среда передачи | Секции | Синхронные транспортные модули STM |
Физическая среда |
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Дефекты в кристаллах
Дефекты в кристаллахВсякий реальный кристалл не имеет совершенной структуры и обладает рядом нарушений идеальной пространственной р
- Расчёт устойчивости электрических систем
Устойчивость применительно к электрической системе – это способность её вернуться к исходному или новому установившемуся состоянию,
- Английский физик Майкл Фарадей
I ВступлениеЗаконы естествознания постулируются на основании наблюдаемых опытных фактов. Сначала идет процесс накопления знаний в опр
- Монтаж и эксплуатация электрооборудования
1. Монтаж электрооборудования1.1 Монтаж внутренних электрических сетейМатериалы и изделия для электромонтажных работ. Основные способ
- Проектирование системы электроснабжения cтанкостроительного завода
Система электроснабжения промышленного предприятия является подсистемой энергосистемы, обеспечивающей комплексное электроснабжени
- Развитие солнечной энергетики
Солнце – источник всего на Земле: света, тепла, жизни. Только солнечный свет дарил людям тепло до того, как они научились добывать огонь,
- Комплект лабораторного оборудования для углубленного изучения физики
КОМПЛЕКТ ЛАБОРАТОРНОГО ОБОРУДОВАНИЯ ДЛЯ УГЛУБЛЕННОГО ИЗУЧЕНИЯ ФИЗИКИ Комплект предназначен для использования в класса
Copyright © https://www.referat-web.com/. All Rights Reserved