Скачать

Возникновение земли. Возникновение жизни на земле

Теория Канта

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в xviii веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений.

Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Иммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжелые и плотные из них под действием силы притяжения соединялись друг с другом, образуя центральный сгусток - Солнце, которое, в свою очередь, притягивало более удаленные, мелкие и легкие частицы.

Таким образом возникло некоторое количество вращающихся тел, траектории которых взаимно пересекались. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счете были втянуты в единый поток и образовали кольца газообразной материи, расположенные приблизительно в одной плоскости и вращающиеся вокруг Солнца в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более легкие частицы, формируя шаровидные скопления материи; так складывались планеты, которые продолжали кружить вокруг Солнца в той же плоскости, что и первоначальные кольца газообразного вещества.

Небулярная теория Лапласа

В 1796 году французский математик и астроном Пьер-Симон Лаплас выдвинул теорию, несколько отличную от предыдущей. Лаплас полагал, что Солнце существовало первоначально в виде огромной раскаленной газообразной туманности (небулы) с незначительной плотностью, но зато колоссальных размеров. Эта туманность, согласно Лапласу, первоначально медленно вращалась в пространстве. Под влиянием сил гравитации туманность постепенно сжималась, причем скорость ее вращения увеличивалась. Возрастающая в результате центробежная сила придавала туманности уплощенную, а затем и линзовидную форму. В экваториальной плоскости туманности соотношение между притяжением и центробежной силой изменялось в пользу этой последней, так что в конечном счете масса вещества, скопившегося в экваториальной зоне туманности, отделилась от остального тела и образовала кольцо. От продолжавшей вращаться туманности последовательно отделялись все новые кольца, которые, конденсируясь в определенных точках, постепенно превращались в планеты и другие тела солнечной системы. В общей сложности от первоначальной туманности отделилось десять колец, распавшихся на девять планет и пояс астероидов - мелких небесных тел. Спутники отдельных планет сложились из вещества вторичных колец, оторвавшихся от раскаленной газообразной массы планет.

Вследствие продолжавшегося уплотнения материи температура новообразованных тел была исключительно высокой. В то время и наша Земля, по П. Лапласу, представляла собой раскаленный газообразный шар, светившийся подобно звезде. Постепенно, однако, этот шар остывал, его материя переходила в жидкое состояние, а затем, по мере дальнейшего охлаждения, на его поверхности стала образовываться твердая кора. Эта кора была окутана тяжелыми атмосферными парами, из которых при остывании конденсировалась вода.

Эти две теории взаимно дополняли друг друга, поэтому в литературе они часто упоминаются под общим названием как гипотеза Канта-Лалласа. Поскольку наука не располагала в то время более приемлемыми объяснениями, у этой теории было в XIX веке множество последователей. Современные теории

Среди последующих космогонических теорий можно найти и теорию “катастроф”, согласно которой наша Земля обязана своим образованием некоему вмешательству извне, например, близкой встрече Солнца с какой-то блуждающей звездой, вызвавшей извержение части солнечного вещества. В результате расширения раскаленная газообразная материя быстро остывала и уплотнялась, образуя большое количество маленьких твердых частиц, скопления которых были чем-то вроде зародышей планет.

В последние годы американскими и советскими учеными был видвинут ряд новых гипотез. Если раньше считалось, что в эволюции Земли происходил непрерывный процесс отдачи тепла, то в новых теориях развитие Земли рассматривается как результат многих разнородных, порой противоположных процессов. Одновременно с понижением температуры и потерей энергии могли действовать и другие факторы, вызывающие выделение больших количеств энергии и компенсирующие таким образом убыль тепла. Одно из этих современных предположений его автор американский астроном Ф. Л. Уайпль (1948) назвал “теорией пылевого облака”. Однако по существу это ничто иное как видоизмененый вариант небулярной теории Канта-Лапласа.

Любопытно, что на новом уровне, вооруженные более совершенной техникой и более глубокими познаниями о химическом составе солнечной системы, астрономы вернулись к мысли о том, что Солнце и планеты возникли из обширной, нехолодной туманности, состоящей из газа и пыли. Мощные телескопы обнаружили в межзвездном пространстве многочисленные газовые и пылевые “облака”, из которых некоторые действительно конденсируются в новые звезды. В связи с этим первоначальная теория Канта-Лапласа была переработана с привлечением новейших данных; она может сослужить еще хорошую службу в деле объяснения процесса возникновения солнечной системы.

Каждая из этих космогонических теорий внесла свой вклад в дело выяснения сложного комплекса проблем, связанных с происхождением Земли. Все они рассматривают возникновение Земли и солнечной системы как закономерный результат развития звезд и вселенной в целом. Земля появилась одновременно с другими планетами, которые, как и она, вращаются вокруг Солнца и являются важнейшими элементами солнечной системы. Земля: атмосфера и гидросфера

После своего возникновения приблизительно 4600 млн. лет тому назад наша Земля, по всей вероятности, уже не меняла своей формы. Ее химический состав также остался первоначальным, однако распределение отдельных химических элементов существенно изменилось. Поверхность Земли первоначально была пустынной и не носила следов эрозии.

Первичная атмосфера Земли, возникшая из межзвездного газа, состояла преимущественно из водорода и гелия. Однако гравитация Земли не могла удержать легкие газы и значительная часть их ускользала в межпланетное пространство, а оттуда под действием солнечного ветра эти газы вытеснялись за пределы солнечной системы.

Современная “кислородная” земная атмосфера имеет вторичное происхождение. Она пополнялась и пополняется за счет газов, выделяющихся при жизнедеятельности организмов на поверхности Земли и вулканической деятельности земных недр. Биогенное происхождение имеет практически весь свободный кислород атмосферы.

Видимо, лишь в течение относительно короткого времени Земля оставалась безводной. Ее гидросфера сложилась приблизительно таким же путем, как и атмосфера - сначала в виде водяных паров, которые по мере понижения температуры конденсировались и выпадали в виде осадков. Поскольку Земля находится на довольно-таки выгодном расстоянии от Солнца (в 1500 млн. километрах), температура на ее поверхности колеблется в узких пределах, главным образом оставаясь обычно несколько выше 0 . При такой температуре вода на поверхности Земли остается в жидком состоянии, что имело колоссальное значение для всей дальнейшей истории Земли, так как вода является идеальной средой для самых разных химических реакций. Как только на поверхности Земли стали задерживаться водные массы, образуя в местах депрессий сплошные водные бассейны, в эволюции нашей планеты наступил период, известный под названием океанического.

На Земле участились ураганы и грозы невиданной силы. Ливни растворяли все растворимые соли, находившиеся на поверхности Земли, а также вымывали их из горных пород. Образовавшиеся растворы выносились в мировой протоокеан и накапливались там. Таким образом, морская вода стала соленой уже очень рано.

С возникновением гидросферы и атмосферы появились новые силы, активно преобразующие лик Земли и ныне.

Осадочные породы

Древнейшими горными породами являются застывшие кристаллические породы первичной коры, образовавшиеся из расплавленной магмы еще на “звездной” стадии эволюции Земли по мере ее постепенного остывания. Все участки Земли, которые после образования первичного океана остались не покрытыми водой, начали подвергаться физическому и химическому выветриванию. Частицы разрушенных горных пород перемешались под влиянием ветра и водных потоков и осаждались на новых местах в виде осадочных пород.

Осадки откладывались последовательными слоями и группами слоев, чаще всего на дне морей. Они уплотнялись, превращаясь в горные породы, бесчисленные тектонические движения земной коры сжимали их в складки. То тут, то там возникали и вновь разрушались горы. Осадочные породы являются свидетелями этих превращений. По ним мы можем сказать, откладывались ли они в море или в пустыне, в условиях теплого или холодного, засушливого или влажного климата. Если бы на Земле существовало место, где осадочные породы оставались бы в нетронутом виде так, как они отлагались в течение в,сех геологических периодов вплоть до наших дней, то мы получили бы законченную картину истории Земли. Эта картина включала бы в себя и историю жизни на Земле, так как различные слои осадочных пород содержат окаменелые остатки современных им животных и растений. Изучая их мы можем познать, как развивалась жизнь на нашей планете и как выглядели предки современных животных и самого человека.

Из геологии мы знаем, что земная кора не является неподвижной. Одни ее части поднимаются, другие опускаются. Во многих местах море отступает, освобождая большие куски суши, тогда как в других местах целые районы медленно, но верно погружаются в зыбучие волны. Так могут возникать из моря или погружаться в него целые континенты. Такая “неспокойная” эволюция земной поверхности не позволяет осадочным породам откладываться в непрерывных сериях; вот почему количество и характер отложений в разных местах различны и повсюду отличаются неполнотой.

Законченную картину развития Земли можно получить, только изучая слои осадочных пород в различных местах земной поверхности и сопоставляя полученные результаты. В этом и состоит основная задача исторической геологии, главный раздел которой - наука об исторической последовательности слоев земной коры - именуется стратиграфией. Эта наука основывается на изучении состава горных пород (литология), а также на исследовании остатков животных и растений, “законсервированных” в горных породах, и на определении абсолютного возраста горных пород, основывающемся на закономерностях распада во времени радиоактивных элементов, содержащихся в этих породах.

По высоте эволюционного развития ископаемых организмов в слоях различного возраста мы можем распределить эти слои по стратиграфической шкале. Наука, изучающая органический мир прошлых геологических эпох по окаменевшим остатком животных и растений, захороненных в осадочных породах, называется палеонтологией.

На основе стратиграфических данных геологи и палеонтологи подразделили всю историю Земли на два неравных этапа: криптозой с археозойской и протерозойской эрами и фанерозой с палеозойской, мезозойской и кайнозойской эрами. Эры, в свою очередь, подразделяются на различные периоды, эпохи и т. д. Мы начнем наше описание со времени, когда на Земле впервые появилась жизнь, с древнейшего первичного океана криптозоя. Криптозой

Это геологическое время началось с момента происхождения Земли 4,6 млрд. лет назад, включает период формирования земной коры и протоокеана и заканчивается с широким распространением высокоорганизованных организмов с хорошо развитым наружным скелетом. Криптозой принято подразделять на архей, или археозой, длившийся приблизительно 2 млрд. лет, и протерозой, продолжительность которого также близка к 2 млрд. лет. Когда-то в криптозое, не позже чем 3,5 млрд. лет назад, появилась на Земле жизнь.

Происхождение жизни

Жизнь могла появиться только тогда, когда в архее сложились для этого благоприятные условия и, в первую очередь, благоприятная температура. Живая материя, помимо других веществ, построена из белков. Поэтому к моменту происхождения жизни температура на земной поверхности должна была упасть настолько, чтобы белки не разрушались. Известно, что ныне температурная граница существования живой материи лежит у 90 С, в горячих источниках при этой температуре живут некоторые бактерии. При этой высокой температуре уже могут образовываться определенные органические соединения, необходимые для образования живой материи, и прежде всего белки. Трудно сказать, сколько времени понадобилось для того, чтобы земная поверхность остыла для соответствующей температуры.

Многие исследователи, изучающие проблему происхождения жизни на Земле, полагают, что жизнь зародилась на морском мелководье в результате обычных физико-химических процессов, присущих неорганической материи. Определенные химические соединения образуются в определенных условиях и химические элементы соединяются друг с другом в определенных весовых соотношениях. Вероятность возникновения сложных органических соединений особенно высока для атомов углерода вследствие их специфических особенностей. Именно поэтому углерод стал тем строительным материалом, из которого по законам физики и химии относительно легко и быстро возникли самые сложные органические соединения.

Молекулы отнюдь не сразу достигли той степени сложности, которая необходима для построения “живой материи. Мы можем говорить о химической эволюции, предшествовавшей биологической и завершившейся появлением живых существ. Процесс химической эволюции был довольно медленным. Начало этого процесса удалено от современности на 4,5 млрд. лет и практически совпадает со временем формирования самой Земли. Первым этапом на этом пути было возникновение элементов, которые стали вступать в различные комбинации, образуя химические соединения. И вскоре после этого на поверхности Земли появились органические соединения и их полимеры, оказавшиеся предшественниками первичных живых систем - эобионтов. Последние появились на менее 3,5 млрд. лет назад.

Первые живые организмы отличались, естественно, предельной простотой строения. Однако естественный отбор, в ходе которого выживали мутанты, лучше приспособленные к условиям среды, я вымирали их менее адаптированные конкуренты, вел к неуклонному усложнению форм жизни. Первичные организмы, появившиеся, по нашим представлениям, где-то в раннем архее, еще не подразделялись на животных и растения. Обособление этих двух систематических групп было закончено только в конце раннего архея. Древнейшие организмы жили и умирали в первичном океане, и скопления их мертвых тел уже могли оставить в породах отчетливые отпечатки.

Первые живые организмы могли питаться исключительно органическими веществами, т. е., они были гетеротрофными. Но исчерпав запасы органического вещества в своем ближайшем окружении, они оказались поставленными перед выбором: погибнуть или выработать способность синтезировать органические вещества из материалов неживой природы, и прежде всего из углекислого газа и воды. И действительно, в ходе эволюции некоторые организмы (растения) приобрели способность поглощать энергию солнечных лучей и с ее помощью расщеплять воду на составляющие элементы. Используя водород для восстановительной реакции, они смогли перерабатывать углекислый газ в углеводы и строить из него другие органические вещества в своем теле. Эти процессы известны под названием фотосинтеза. Организмы, способные превращать неорганические вещества в органические путем внутренних химических процессов, называются автотрофными. Появление фотосинтезирующих автотрофных организмов явилось переломным моментом в истории жизни на Земле. С этого времени началось накопление свободного кислорода в атмосфере и стало резко увеличиваться общее количество существующего на Земле органического вещества. Без фотосинтеза дальнейший прогресс в истории жизни на Земле был невозможен. Следы фотосинтезирующих организмов мы находим в самых древних слоях земной коры.

Первые животные и растения были микроскопическими одноклеточными существами. Определенным шагом вперед было объединение однородных клеток в колонии; однако по-настоящему серьезный прогресс стал возможен только после появления многоклеточных организмов. Их тела состояли из отдельных клеток или групп клеток различной формы и назначения. Это дало толчок бурному развитию жизни, организмы становились все более сложными и разнообразными. В начале протерозойского периода быстро прогрессировала флора и фауна планеты. В морях процветали уже несколько более прогрессивные формы водорослей, появились первые многоклеточные организмы: губки, кишечнополостные, моллюски и черви. Последующие этапы биологического развития сравнительно легко прослеживаются по окаменелым остаткам скелетов, встречающимся в различных слоях земной коры. Эти остатки, которые благодаря случаю и благоприятной среде сохранились в отложениях вплоть до наших дней, мы называем окаменелостями, или ископаемыми. Древнейшие окаменелости

Древнейшие остатки организмов на Земле обнаружены в докембрийских отложениях Южной Африки. Это бактериеподобные организмы, возраст которых оценивается учеными в 3,5 млрд. лет. Они столь малы (0,25 Х 0,60 мм), что разглядеть их можно только с помощью электронного микроскопа. Органические части этих микроорганизмов хорошо сохранились и позволяют сделать заключение о сходстве с современными бактериями. Химический анализ выявил их биологический характер. Другие доказательства докембрийской жизни были найдены в древних образованиях Миннесоты (27 млрд. лет), Родезии (2,7 млрд. лет), вдоль границы Канады и США (2 млрд. лет), на севере штата Мичиган (1 млрд. лет) и в других местах.

Остатки животных со скелетными частями обнаружены в докембрийских отложениях лишь в последние годы. Однако уже давно в докембрийских отложениях находили остатки различных “бесскелетных” животных. Эти примитивные существа еще не имели ни известкового скелета, ни твердых опорных структур, однако изредка находились отпечатки тел многоклеточных организмов, а как исключение и их окаменевшие остатки. В качестве примера можно привести открытие в канадских известняках любопытных шишковидных образований Atikokania, - которых многие ученые считают родителями морских губок. На жизнедеятельность более крупных живых существ, по всей вероятности червей, показывают четкие зигзагообразные отпечатки, - следы ползания, а также остатки “норок”, обнаруженные в тонкослоистых осадках морского дна. Мягкие тела животных разложились в незапамятные времена, но палеонтологи смогли по следам определить образ жизни животных и установить существование различных их родов, напр., Planolithes, Russophycus и др. Чрезвычайно интересная фауна была открыта в 1947 г. австралийским ученым Р.К. Сприггсом в холмах Эдиакары, приблизительно в 450 км к северу от Аделаиды (Южная Австралия). Эта фауна была изучена профессором Аделаидского университета, австрийцем по происхождению, Н. Ф. Глесснером, который констатировал, что большинство видов животных из Эдиакары относится к неизвестным ранее группам бесскелетных организмов. Одни из них принадлежат к древним медузам, другие напоминают сегментированных червей - аннелид. В Эдиакаре и близких по возрасту местонахождениях Южной Африки и других регионов обнаружены также остатки организмов, принадлежащих к совершенно неизвестным науке группам. Так, профессор X. Д. Пфлуг установил на основе некоторых остатков новый тип примитивных многоклеточных животных Petalonamae. Эти организмы обладают листовидным телом и происходят, по-видимому, от примитивнейших колониальных организмов. Родственные связи петалонамий с другими типами животных не вполне ясны. С эволюционной точки зрения, однако, очень важно что в эдиакарское время сходная по составу фауна населяла моря различных регионов Земли.

Еще совсем недавно многие высказывали сомнение в том, что эдиакарские находки действительно имеют протерозойское происхождение. Новые радиометрические методы показали, что слои с эдиакарской фауной насчитывают возраст около 700 млн. лет. Иными словами, они принадлежат позднему протерозою.

Еще более широкое распространение имели в протерозое микроскопические одноклеточные растения. Следы жизнедеятельности синезеленых водорослей так называемые строматолиты, построенные из концентрических слоев извести, известны в отложениях, возраст которых насчитывает до 3 млрд. лет. Синезеленые водоросли не обладали скелетом и строматолиты образованы материалом, выпавшим в осадок в результате биохимических процессов жизнедеятельности этих водорослей. Синезеленые водоросли, наряду с бактериями, принадлежат к наиболее примитивным организмам - прокариотам, в клетках которых еще отсутствовало оформленное ядро.

Итак, в докембрийских морях появилась жизнь, а появившись, разделилась на две главные формы: на животных и растения. Первые простейшие организмы развились в многоклеточные организмы, относительно сложные живые системы, ставшие родоначальниками растений и животных, которые в последующие геологические эпохи расселились по всей планете. Жизнь множила свои проявления на морском мелководье, проникая и в пресноводные бассейны; многие формы уже готовились к новому революционному этапу эволюции - к выходу на сушу.

Палеозойская эра

Вряд ли можно мысленно охватить отрезок времени длиной в 370 млн. лет. Именно столько продолжался следующий этап истории Земли — палеозойская эра. Геологи подразделяют ее на шесть периодов: кембрийский — самый древний из них, — ордовикский, силурийский, девонский, карбоновый и пермский. Палеозой начался колоссальным разливом морей, последовавшим за появлением обширных кусков суши в конце протерозоя. Многие геологи полагают, что в те времена существовал единый огромный континентальный блок, называемый Пангея (в переводе с греческого — “вся земля”), который был со всех сторон окружен мировым океаном. Со временем этот единый континент распался на части, ставшие ядрами современных континентов. В ходе дальнейшей истории Земли эти ядра могли увеличиваться за счет процессов горообразования или же вновь распадаться на части, которые продолжали удаляться друг от друга, пока не заняли положение современных континентов.

Впервые гипотезу о разрыве и взаимном расхождении континентов (“континентальный дрейф”) высказал в 1912 г. немецкий геолог Альфред Вегенер. По его представлениям Пангея первоначально разделилась на два сверхконтинента: Лауразию в северном полушарии и Гондвану на юге. Впадина между ними была затоплена морем, носящим название Тетис. Позднее, в силурийском периоде вследствие каледонского и герцинского горообразовательных процессов на севере поднялся обширный континент. Его сильно пересеченный рельеф в ходе девонского периода был занесен продуктами выветривания мощных горных массивов; в .сухом и горячем климате их частицы обволакивались окисью железа, что придавало им красноватую окраску. Подобное явление можно наблюдать и в некоторых современных пустынях. Вот почему этот девонский континент часто называется Древним красным континентом. На нем в девоне пышно развивались многочисленные новые группы наземных растений, а в некоторых его частях были обнаружены остатки первых наземных позвоночных — рыбообразных амфибий.

В это время Гондвана, включавшая в себя всю современную Южную Америку, почти всю Африку, Мадагаскар, Индию и Антарктиду, оставалась еще единым сверхконтинентом.

К концу палеозоя море отступило, и герцинское горообразование стало понемногу слабеть, сменившись варисцийской складчатостью Центральной Европы. В конце палеозоя вымирают многие наиболее примитивные растения и животные. Растения завоевывают сушу

В течение палеозоя одни группы растений постепенно сменялись другими. В начале эры, от кембрия до силура, доминировали морские водоросли, но уже в силуре появляются высшие сосудистые растения, произрастающие на суше. До конца каменноугольного периода преобладали споровые растения, но в пермском периоде, особенно, в его второй половине, значительную часть наземной растительности составляют семянные растения из группы голосеменных (Gymnospermae). До начала палеозоя, за исключением нескольких сомнительных находок спор, признаков развития наземных растений нет. Однако, вполне вероятно, что некоторые растения (лишайники, грибы) начали проникать во внутренние районы суши еще в протерозое, так как нередко отложения этого времени содержат значительные количества необходимых растениям питательных веществ.

Для того, чтобы приспособиться к новым условиям жизни на суше, многим растениям пришлось коренным образом изменить свое анатомическое строение. Так, например, растениям нужно было приобрести наружный эпидермальный покров для защиты от быстрой потери влаги и высыхания; их нижние части должны были одеревянеть и превратиться в подобие опорного каркаса, чтобы противостоять силе тяжести, столь чувствительной после выхода из воды. Корня ми они уходили в почву, откуда черпали воду и питательные вещества. Поэтому растениям нужно было выработать сеть каналов для доставки этих веществ к верхним частям своего тела. Кроме того, они нуждались в плодородной почве, а условием этого была жизнедеятельность множества почвенных микроорганизмов, бактерий, синезеленых водорослей, грибов, лишайников и почвенных животных. Продукты жизнедеятельности и мертвые тела этих организмов постепенно превращали кристаллические горные породы в плодородную почву, способную прокормить прогрессирующие растения. Попытки освоения суши становились все более удачными. Уже в отложениях силурийских морей Центральной Чехии встречаются хорошо сохранившиеся остатки древнейших сосудистых растений — псилофитов (в переводе с греческого — “лишенных листьев”). Эти первичные высшие растения, стебель которых нес пучок сосудов, проводящих жидкости, имели наиболее сложную и комплексную организацию из всех автотрофныхрастенийтоговремени,исключая,возможно,существовавшие уже в то время мхи, наличие которых в силуре, однако, еще не доказано. Псилофитовые флоры, появившиеся к концу силурийского периода, процветали вплоть до конца девона. Таким образом, силурийский период положил конец многовековому господству водорослей в растительном мире планеты. Хвощи, плауны и папоротники

В нижних слоях девона, в отложениях Древнего красного континента, в изобилии встречаются остатки новых групп растений с развитой сосудо-проводящей системой, размножающихся спорами, как и псилофиты. Среди них преобладают плауны, хвощи и — с середины девонского периода — папоротники. Множество находок остатков этих растений в девонских породах, позволяет заключить, что после протерозоя растения прочно обосновались на суше.

Уже в среднем девоне папоротники начинают вытеснять псилофитовую флору, а в верхнедевонских слоях появляются уже древовидные папоротники. Параллельно идет развитие различных хвощей и плаунов. Иногда эти растения достигали крупных размеров, и в результате накопления их остатков в некоторых местах в конце девона образовались первые значительные залежи торфа, который постепенно превращался в каменный уголь. Таким образом, в девоне Древний красный континент мог предоставить растениям все необходимые условия для миграции из прибрежных вод на сушу, для чего потребовались миллионы лет.

Следующий, каменноугольный период палеозойской эры принес с собой мощные горообразовательные процессы, в результате которых на поверхность вышли части морского дна. В бесчисленных лагунах, дельтах рек, топях в зоне литорали воцарилась буйная тепло- и влаголюбивая флора. В местах ее массового развития скоплялись колоссальные количества торфообразного растительного вещества, и, со временем, под действием химических процессов, они преобразовывались в обширные залежи каменного угля

В пластах угля часто встречаются прекрасно сохранившиеся остатки растений, свидетельствующие о том, что в ходе каменноугольного периода на Земле появилось много новых групп флоры. Большое распространение получили в это время птеридоспермиды, или семенные папоротники, которые, в отличие от папоротников обыкновенных, размножаются не спорами, а Семенами. Они представляют собой промежуточный этап эволюции между папоротниками и цикадовыми .— растениями, похожими на современные пальмы, — с которыми птеридоспермиды находятся в тесном родстве. Новые группы растений появлялись в течение всего каменноугольного периода, в том числе такие прогрессивные формы, как кордаитовые и хвойные. Вымершие кордаитовые были, как правило, крупными деревьями с листьями длиной до 1 м. Представители этой группы активно участвовали в образовании местонахождений каменного угля. Хвойные в то время только лишь начинали развиваться, и поэтому были еще не столь разнообразны.

Одними из наиболее распространенных растений карбона были гигантские древовидные плауны и хвощи. Из числа первых наиболее известны лепидодендроны — гиганты высотой в 30 м, и сигиллярии, имевшие немногим более 25 м. Стволы этих плаунов разделялись у вершины на ветви, каждая из которых заканчивалась кроной из узких и длинных листьев. Среди гигантских плауновидных были также каламитовые — высокие древовидные растения, листья которых были разделены на нитевидные сегменты; они произрастали на болотах и в других влажных местах, будучи, как и другие плауны, привязанными к воде.

Но самыми замечательными и причудливыми растениями карбоновых лесов были, вне всякого сомнения, папоротники. Остатки их листьев и стволов можно найти в любой крупной палеонтологической коллекции. Особенно поразительный облик имели древовидные папоротники, достигавшие от 10 до 15м в высоту, их тонкий стебель венчала крона из сложно расчлененных листьев ярко-зеленого цвета.

В начале пермского периода еще доминировали спороносные растения, но уже к концу этого последнего этапа палеозойской эры их сильно потеснили голосеменные. Среди этих последних мы находим типы, достигшие своего расцвета лишь в мезозое. Разница между растительностью начала и конца пермского времени огромна. В середине перми совершается переход от начальных фаз эволюции наземных растений к его среднему этапу — мезофиту, для которого характерно господство голосеменных.

В нижнепермских отложениях постепенно исчезают гигантские плауны, как и большинство спороносных папоротников и некоторых хвощей. Зато появляются новые виды папоротникообразных растений (Callipteris conferma, Taeniepteris и др.), которые быстро расселяются по территории тогдашней Европы. Среди пермских находок особенно часты окремнелые стволы папоротников, известные под названием Psaronius. Все реже попадаются в нижней перми кордаитовые, зато расширяется состав гинктовых (GinKgoales) и цикадовых. В сухом климате того времени прекрасно чувствовали себя хвойные. В ранней перми широко распространены были роды Lebachia и Ernestiodendron, а в поздней — Ullmannia и Voltzia. В Южном полушарии процветала так называемая гондванская, или Первые голосеменные глоссоптерисовая флора. Характерный представитель этой флоры — Glossopteris — принадлежит уже к семенным папоротникам. Леса каменноугольного, а во многих районах Земли также и раннепермского времени приобрели теперь огромное экономическое значение, поскольку за их счет образовались основные промышленные местонахождения каменного угля.

Животный мир палеозоя

В протерозое тела животных были построены весьма примитивно и обычно не имели скелета. Однако типичные ископаемые палеозойских отложений уже обладали прочным наружным скелетом, или раковиной, защищавшим уязвимые части тела. Под этим покровом животные меньше опасались естественных врагов, что создало предпосылки для быстрого увеличения размеров тела и усложнения организации животных. Появление скелетных животных произошло в самом начале палеозоя — в раннем кембрии, после чего началось их стремительное развитие. Хорошо сохранившиеся окаменелые остатки скелетных животных встречаются повсеместно во множестве, что резко контрастирует с крайней редкостью протерозойских находок.

Некоторые ученые рассматривают эту взрывообразную эволюцию как доказательство того, что концентрация атмосферного кислорода достигла к началу кембрия уровня, необходимого для развития высших организмов. В верхней части земной атмосферы образовался озоновый экран, поглощающий губительное ультрафиолетовое излучение, что стимулировало развитие жизни в океане. Повышение содержания кислорода в атмосфере неизбежно вело к росту интенсивности жизненных процессов. Доктор Э. О. Кангеров полагает, что раковины и внутренний скелет у животных могли появиться только тогда, когда организмы получили в свое распоряжение источник энергии, перекрывающий минимум, необходимый для поддержания внутреннего метаболизма. Таким источником энергии оказалась повышенная концентрация кислорода в атмосфере. Животные, быстро приспосабливаясь к измененной среде, приобретали различные типы раковин, панцирей и внутреннего скелета. При всем своем разнообразии все эти животные пока еще жили в морях, и лишь позднее в ходе эволюции некоторые из них приобрели способность дышать атмосферным кислородом.

Фауна раннего палеозоя была уже столь разнообразной, что в ней были представлены практически все основные разделы беспозвоночных. Такому высокому уровню дифференциации животных, начиная с кембрийского периода, неизбежно должна была предшествовать длительная эволюция, хотя скудные материалы докембрия и не позволяют нам восстановить в деталях картину такого развития. Трилобиты и другие членистоногие

Самыми типичными представителями палеозойской фауны являются, вне всякого сомнения, относящиеся к членистоногим животные, известные под названием трилобиты, что в переводе значит “трехдольные”. Их сегментированное тело было покрыто прочным панцирем, подразделенным на три отдела: голову, туловище и хвост. Известно, что 60 % всех видов животного царства раннего палеозоя принадлежало именно к этой группе. До настоящего времени только в одном-единственном случае удалось найти докембрийские остатки членистоногих — в 1964 г. в Австралии. Но уже с самого начала кембрия трилобиты начинают свое триумфальное развитие, разделяясь на сотни родов и видов, многие из которых исчезли с лица планеты столь же быстро, как и появились. Трилобиты во множестве обитали в ордовикских морях, продолжая, хотя и не так интенсивно, свою эволюцию, о чем можно судить по отложениям этого времени, богатым новыми родами трилобитообразных. Трилобиты пошли на убыль в силурийском периоде и стали еще более редкими в девоне. В карбоне и перми существовало одно-единственное семейство трилобитов (Proetidae), последние представители которого вымерли к концу перми. Трилобиты имели повсеместное распространение в палеозое, поэтому они играют важную роль при определении возраста и сравнении отложений разных континентов.

Гигантом среди палеозойских беспозвоночных был, несомненно, морской ракоскорпион Eurypterus, относящийся к группе Merostomata, до известной степени промежуточной между трилобитами и скорпионами и появившейся еще в кембрии. Расцвета меростомовые достигли в среднем палеозое, когда произошло вселение части их из морей в пресные воды. Размеры палеозойских меростомовых в силуре и девоне достигали 3 м. До наших дней сохранились лишь представители одного семейства мечехвостов (Limulidae).

В девоне и, особен