Скачать

Влияние препарата седимина в комплексе с пробиотиком Сиб-Мос ПРО на продуктивные качества молодняка крупного рогатого скота

В настоящее время экономическая нестабильность России в отрасли животноводства привела к снижению продуктивности и значительному сокращению поголовья всех видов сельскохозяйственных животных. Болезни животных, связанные с нарушением обменных процессов в организме, широко распространены и наносят большой ущерб животноводству (В. Блохин, 1994). Это крайне отрицательно влияет на удовлетворение нашей страны в наиболее биологически полноценных продуктах питания.

Количество и качество продуктов питания, особенно животного происхождения, имеют первостепенное значение при формировании и сохранении здоровья человека и поддержания адаптационных возможностей его организма к окружающей среде. Качество таких продуктов, в частности, определяется их микроэлементным составом, и в немалой степени - содержанием йода и селена.

Среди заболеваний, характеризующихся нарушением обмена веществ, особое место занимают эндемические болезни (йодная недостаточность, зобная болезнь), важнейшими причинами которых считаются дефицит и избыток некоторых химических элементов в объектах биосферы. В частности, возникновение и развитие эндемического зоба в настоящее время связывается в основном с недостаточным поступлением в организм йода и селена (А.А. Оножеев, 2006).

По данным Кемеровской государственной медицинской академии в Кузбассе недостаток йода и селена прослеживается по всем природно-климатическим зонам Кузбасса. Около 95% населения Кузбасса испытывают селеновый дефицит различной степени тяжести. Также 35% населения имеют недостаточную обеспеченность йодом (Е.В. Брежнева, С.Ф. Зинчук, 2002).

В отдельных источниках отмечается, что одновременный дефицит селена и йода приводит к более сильному гипотиреоидизму, чем дефицит в составе рациона одного йода. Недостаток селена в организме животных снижает функциональную активность гормонов щитовидной железы, препятствуя синтезу йодтирониндейодиназы, которая превращает тироксин в более активную форму трийодтиронин (J.R. Arthur, G.J. Beckett, 1994).

Дефицит йода и селена в рационах животных наносит огромный ущерб животноводству за счет снижения молочной, мясной и шерстной продуктивности, воспроизводительной способности, так как йодно-селеновая профилактика их в Сибири плохо организована.

В последнее десятилетие пробиотические и пребиотические препараты широко применяются с превентивной целью в животноводстве. Поиски экономически оправданного решения этой комплексной проблемы привели к открытию замечательных свойств сложных углеводов, помогающих оптимизировать состав микрофлоры пищеварительного тракта и нормализовать строение его слизистой оболочки.

Для всасывания селена и йода важное значение имеет РН среды содержимого кишечника, в регуляции которого принимает участие микрофлора. Чаще всего в кишечнике уменьшается количество бифидобактерий, которые выполняют ряд важных функций: защищают слизистую от проникновения в кровь патогенных и условно-патогенных микроорганизмов, в процессе жизнедеятельности синтезируют антибиотикоподобные вещества, органические кислоты, препятствующие развитию патогенов (Ф. Цогоева и др., 2005).

Поэтому совместное использование селена и йода на фоне пробиотиков и пребиотиков для повышения продуктивности сельскохозяйственных животных и оптимизации их гомеостаза является актуальной проблемой.


1. ОБЗОР ЛИТЕРАТУРЫ

1.1.   Биологическая и геохимическая характеристика селена, йода и железа

При организации кормления сельскохозяйственных животных большое значение имеют биологически активные вещества (К.М. Гурьянов, 1995). Из минеральных элементов, обладающих биологической активностью, необходимо отметить фосфор, серу, железо, марганец, медь, кобальт, селен и йод. Эти вещества в составе кормов или подкормок стимулируют обменные процессы, непосредственно участвуя в составе биологических комплексов в этих процессах (В.Д. Георгиевский, Б.Д. Кальницкий, 1983). На этом фоне особое внимание заслуживают микроэлементы селен и йод.

Известно несколько биогеохимических провинций мира с глубоким дефицитом селена в почве и эндемичных регионов с токсическими концентрациями данного микроэлемента в окружающей среде. К первым относят некоторые провинции Китая, Новую Зеландию, Бурятию, Читинскую область, ко вторым - Барыкинскую долину Тувы, западные штаты США (американская Великая долина), отдельные районы Канады, Мексики, Австралии, Китая, а также зоны добычи и переработки сульфидных, урановых, медных руд. Сюда же можно отнести отдельные районы Средней Азии, Южного Урала, Минусинскую впадину. С учетом данных о накоплении селена в растениях, а также известных химических характеристик почв составлена карта распределения микроэлемента на территории России (В.В. Ермаков, 1999; Н.А. Голубкина, 1998).

В целом данные такого прогноза позволяют относить большую часть России к селенодефицитным регионам. Действительно, к районам высокого риска дефицита селена относят также центральные районы Нечерноземья, Вологодскую, Кировскую и Свердловскую область, Башкортостан, Удмуртию и Чувашию. Случаи беломышечной болезни встречаются на всей территории бывшего СССР, охватывая его южную часть (Алтай, Тува, Иркутская, Читинская, Амурская, Кемеровская области, Хабаровский край, Дальний Восток, Казахстан, центральная часть Азербайджана, долина озера Иссык-Куль. Положение усугубляется распространенностью дефицита селена в данных регионах, поскольку селен входят в состав ферментов щитовидной железы. Анализ представленных данных показывают, что подобная оценка сделана на основе предположения о линейной корреляции между уровнем биологически доступного селена в почвах и величиной обеспеченности им населения (Е.М. Яськовски, 1990).

Gupta Umesh C. и Cupta Subhas C. (2001) отмечают, что содержание селена в почвах зависит от материнских пород, выщелачивания и гранулометрического состава почв; валовое содержание селена 0,1-0,6 мг/кг почвы считают недостаточным, оно характерно для почв Новой Зеландии, Дании, Канады. Почвенная кислотность снижает доступность селена растениями. Количество селена в растениях изменяется в пределах от 0,005 мг/кг при дефиците до 5500 мг/кг сухого вещества в аккумулирующих селеном культурах при избытке селена в почвах. Много селена содержат капустные и бобовые, особенно соя.

Содержание селена в различных породах неодинаково. Наиболее богаты селеном сланцы (0,6 мг/кг). Концентрация селена в изверженных породах, в известняках в среднем в 10 раз меньше, чем в сланцах. Очень мало селена в речной (< 0,02 мг/кг) и морской воде (0,00009 мг/кг). В почвах в среднем содержится 0,2 мг/кг. Поглощение селена растениями не зависит от его концентрации в почве. На щелочных почвах, где селен, находится в форме водорастворимых соединений, растения очень легко поглощают его. В таких районах земного шара наблюдаются острые (слепая «вертячка») и хронические («щелочная болезнь») отравления селеном животных. Несмотря на то, что кислые почвы могут содержать много селена, растения поглощают его немного из-за того, что селен образует с железом недоступные растению соединения (А. Хенниг, 1976).

В природе селен, как правило, сопутствует соединениям серы и меди и выделяется в чистом виде при переработке медных руд. Поступает он в организм человека из почвы с продуктами растениеводства и животноводства, что определяет зависимость уровня обеспеченности микроэлементом от геохимических условий проживания. Содержание селена в земной коре составляет 10 %. Среди природных минералов селена наиболее распространены селениды металлов, имеющих большой порядковый номер (свинец, ртуть, серебро, медь, никель). Такие соединения часто встречаются в сульфидных и урановых месторождениях. Известно более 40 микроминералов, содержащих селен.

Предельно допустимая концентрация селена в воздухе составляет 10 мг/м, в питьевой воде 1 мкг/л. Содержание селена в океанской воде - около 0,2 мкг/л. В родниках, скважинах и соленых озерах селена несколько больше. Так, в Венесуэле уровень селена в водах, протекающих через пласты с высокой селеновой минерализацией, достигает 1 мг/л, в США – 9 мг/л. В России выявлены три гидрогеохимические провинции с повышенным содержанием селена в грунтовых водах – Уральская, Тувинская и Алтайская. Большая часть природных источников бедна селеном, что определяет их незначительную роль в формировании селенового статуса растений, животных и человека (В.А. Тутельян, В.А. Княжев, 2002).

В.И Георгиевский и Б.Н Анненков (1979) отмечают, что селен не является необходимым элементом для растений, но находится во всех его частях в виде селеносодержащих аминокислот и частично в виде селенит - и селенат - ионов. Содержание селена в кормовых растениях в норме колеблется от 0,1 до 2,0 мг/кг сухого вещества. В растительных кормах селена 0,4-0,8 мг/кг. Существуют растения – концентраторы селена, в которых содержание селена может достигать 3-4 г/кг сухого вещества (семейство астрагалов).

По данным В.Д Сидельниковой (1999) не весь селен почвы доступен для растений. Так, в кислых, сильно заболоченных почвах биодоступность микроэлемента низка, хотя общее содержание может быть и значительным. Здесь большое значение имеет образование нерастворимых комплексов четырехвалентного селена с железом. В аэробных щелочных условиях большая часть селена находится в окисленной форме и легко доступна для растений. По способности накапливать селен и противостоять токсическому действию микроэлемента, растения подразделяются на аккумуляторов и не аккумуляторов селена. К первым относятся некоторые виды астрагалов, к последним – большая часть зерновых и зеленых культур, используемых человеком. Судьба микроэлемента, поступающего из почвы в такие растения, различна. Не аккумуляторы способны синтезировать селеносодержащие аминокислоты и из них – соответствующие белки, что при высоких концентрациях селена приводит к дезактивации значительной части ферментов и, как следствие, гибели растения. Аккумуляторы селена также используют селен в биосинтезе аминокислот, однако последние не участвуют в образовании белков, а аккумулируются в вакуолях, делая таким образом селен безвредным для растения. Естественно, что поедание животными растений подобных видов может сопровождаться токсикозами.

В.В Ермаков и В.В Ковальский (1974) отмечают, что только с 70-х годов в СССР и других странах были начаты систематические исследования по определению концентраций элемента в растениях и рационах в связи с применением соединений селена в животноводстве. В биосфере миграция селена осуществляется по пищевой цепи: из почвы в растения, далее в организм животных, а первые и вторые служат источником селена для человека. Такая взаимосвязь определяет решающую роль почвы в формировании селенового статуса живых организмов.

Метаболизм селена у животных до известной степени сглаживает влияние на организм человека предельно высоких или крайне низких концентраций селена в почве. Однако отдельные органы животных могут накапливать микроэлемент в высоких концентрациях. В организме животных концентрация селена составляет 20-25 мкг/кг живой массы, хотя этот показатель варьирует в зависимости от количества элемента в рационе. Возрастная динамика селена в целом организме изучена недостаточно. Распределение селена в организме аналогично распределению серы: 50-52% его приходится на мышечную ткань, 14-15%- на кожу, шерсть, роговые образования, 10% -на скелет, 8% - на печень, 15-18% -на остальные ткани. Содержание селена в цельной крови разных видов животных колеблется от 5 до 18 мкг в 100 мл. (В.И. Георгиевский, Б.Н. Анненков, В.Т. Самохин, 1979).

Биологическое значение селена первыми поняли в 1957 году Шварц и Фольтц. Селен оказался давно искомым главным компонентом фактора 3, присутствующего в пивных дрожжах и других кормовых средствах и оказывающего лечебный эффект при некрозе печени, который развивается у крыс при кормлении дрожжами (А. Хенниг,1976).

Природный селен представлен одним стабильным изотопом с атомной массой 79. Среди многочисленных радиоактивных изотопов селена в биологической практике нашел применение один Se 75. Селен образует две кислоты – селенистую (H2SeO3) и селеновую (H2SeO2), соли которых называются соответственно селенитами и селенитами. У растений важнейшей химической формой селена является селенометионин (Se-Met). Большая часть селена в животных тканях присутствует в виде Se-Met и селеноцистеина – Sec (A.J. Wittwer , 1989).

Селен является незаменимым биологически активным веществом, эффективным при лечении свыше 20 болезней более чем у 19 видов животных. При его недостатке в рационе развивается: беломышечная болезнь, дистрофия печени, дегенерация яичников, маститы, анемии, гемолиз эритроцитов, экссудативный диатез цыплят, депрессии в росте, нарушение воспроизводительных функций и др. Данный микроэлемент участвует в обмене веществ (белков, жиров и углеводов), в регуляции многих ферментативных реакций и в окислительно-восстановительных процессах, регулирует обмен витамина Е и его депонирование, благоприятно действует на иммунобиологическую реактивность организма. Он регулирует усвоение и расход в организме витаминов А, С, Е, К (А.Ф. Кузнецов, 2001; Н.И. Лебедев, 1976).

Как отмечает М.Ф. Томмэ и Э.Г. Филипович (1975) установлена взаимосвязь между содержанием селена в продуктах питания и заболеваемостью раком. Статистика показала, что там, где выше уровень селена в продуктах питания, меньше случаев заболевания раком. В крови больных раком содержание селена значительно ниже, чем в крови здоровых. Селен предупреждает токсикоз от избытка кадмия, ртути и мышьяка. Он влияет на скорость образования АТФ, повышает и активизирует декарбоксилирование пирувата, оказывает влияние на белковый синтез – регулирует функции клеточных мембран.

Йод - химический элемент периодической системы Д.И. Менделеева, был открыт в 1811 году французским химиком Куртуа. Значение йода в жизни организма велико. Известны лечебные свойства йода и его соединений. Так еще Гиппократ указывал на целебные свойства морских водорослей при лечении зоба. Пятьсот лет назад в Китае и Японии жителям было рекомендовано употреблять в пищу морскую капусту с целью сохранения здоровья.

Йод обладает способностью влиять практически на все обменные процессы растительного, животного и человеческого организма, как в комплексе с другими элементами, так и в чистом виде (В.О. Мохнач, 1972).

Высокая летучесть йода имеет большое значение в распределении его в биосфере и в геохимических процессах миграции его на земном шаре. В природе он встречается в виде солей – йодидов и йодатов.

По данным В.И. Вернадского (1954) йод относится к числу рассеянных элементов, и находится в виде микроскопической смеси в различных сферах земной коры. Содержание его ничтожно, и тем не менее он присутствует всюду. Гигантские массы йода на планете находятся в водах океанов и, вероятно, в составе их проникают повсеместно в другие сферы, поскольку отдельной формы воды, не связанной с океаном, нет. Она в форме слабых растворов переносит все элементы по нашей планете. В круговороте йода в биосфере решающая роль принадлежит живому веществу, поскольку живая клетка на 60-99% состоит из воды.

Только после многостороннего исследования ряда природных тел (воздуха, воды, растений, почв и животных), которые провел Матен с 1850 по 1875 г.г. послужило началом систематизации этого элемента.

Количественная оценка различных источников атмосферного йода дает следующие данные: испарение с поверхности океана 5,0*1011 %, морские брызги 5,0*109%, вулканическая деятельность 1,2*109%, разложение органических веществ 1,0*108%. Данные свидетельствуют о том, что 99% йода поступает в атмосферу из океана.

Таким образом, атмосфера над океанами получает огромное количество йода и концентрация его выше, чем над земной поверхностью. Средние показатели содержания йода над сушей колеблются в пределах 0,005–0,01 мкг/м3, над океаном 0,02–0,05 мкг/м3.

Обеднение атмосферы йодом происходит в результате осаждения его на поверхность почвы и растений, вымывания осадками, поглощения растениями. На земле источниками йода являются воды, проходящие через ее нефтяные слои, которые образовались в древние времена из толщи отложений морских водорослей.

Концентрация йода в растениях возрастает по мере удаления их от берега водоемов и с возрастанием глубины местообитания (В.О. Мохнач, 1972). Поэтому йод по земной поверхности и водах основных рек страны распределяются неравномерно.

Количество йода в реках в значительной мере зависит от состава русловых грунтов, которые концентрируют этот элемент. Повышенное содержание йода отмечено в реках, протекающих через территории, которые богаты гумусом или через почвы с высокой минерализацией воды. Пониженное содержание йода характерно для вод рек Сибири, русла которых расположены по кислым коренным породам.

Среднее содержание йода в почвах земного шара составляют 5,0 мг/кг при колебаниях в пределах от 0,5 до 50,0 мг/кг. На солончаковых почвах концентрация йода местами достигает 340 мг/кг, образуя геохимические аномалии этого элемента. Концентрация, локализация и поведение йода в почвах взаимосвязано с комплексом факторов физико-химических свойств элемента и почв.

Одним из ведущих факторов, определяющих концентрацию йода в почвах, является наличие органического вещества и гумуса. По мнению ряда исследователей, причиной этого явления может быть, образование сложных и прочных соединений йода с белками и продуктами их распада, что и происходит в гумусе. Эти вещества в ряде случаев недоступны растениям. На низкое поступление в организм селена и йода существенное влияние оказывают физико-химические свойства почвы (кислый характер пахотного слоя почвы, низкое содержание в ней подвижного фосфора и обменного калия), природно-ландшафтные факторы (наличие заболоченных пастбищ и сенокосов, пашни с переувлажненной почвой и низким содержанием селена и йода) и антропогенные факторы (В.И. Иванов, А.Ю. Гудкова, Н.Л. Павлова, Г.М. Скаржинская и др., 1999).

В растениях йод находится в форме щелочных йодидов, которые быстро усваиваются в организме животных и человека (В.К. Кашин, 1987).

По мнению В.В. Ковальского (1972) существует прямая зависимость между содержанием йода в почве, в воде, в растениях и в животном организме. Наилучшим критерием обеспеченности животного организма этим элементом является содержание его в растительных кормах. Анализ растений имеет преимущество еще и потому, что растения могут поглощать йод из воздуха. Внесением йодных удобрений удается достичь лишь кратковременного увеличения содержания йода в кормах.

Наиболее значительные площади отмечены в США, Египте, Индии, Китае, Швейцарии, Франции, Италии, Австралии, Румынии, Голландии, Германии, Аргентине, Англии, Алжире, Эфиопии, Эквадоре и других местах. Таким образом, установлен планетарный масштаб йодной недостаточности и его влиянии на здоровье животных и человека (Я.З. Лебенгарц, 1991).

В качестве благоприятных зон по концентрации йода можно назвать Сахалин, Курильские острова и Камчатку, где несмотря на относительно суровые условия, хорошо развивается травянистая растительность. Положительное влияние йода на развитие всех видов растительности подтверждается многочисленными опытами. Кроме того, недостаток йода в почве, воде и растительности установлен в регионах и странах СНГ: Башкирии, Чувашии, Закарпатье, Украине, Узбекистане, Киргизии, Азербайджане, а также в Читинской, Ярославской, Ульяновской, Саратовской, Кемеровской, Ленинградской областях и Алтайском крае (В.К. Кашин, 1987).

Следует отметить, что во всех указанных территориях дефицит йода проявляется в разной степени. Установлено, что в пастбищных растениях таежно-лесной нечерноземной зоны содержится в среднем 0,10 мг/кг йода, черноземной 0,20 мг/кг, сухостепной, полупустынной и пустынной 0,23 мг/кг сухого вещества. Центральная Черноземная зона считается наиболее благополучной по содержанию йода в кормах. На ее фоне корма Западной Сибири и Дальнего Востока в большинстве являются недостаточными и бедными. Особенно отмечается сено, где концентрация йода ниже в 4 раза, силос в 6 раз, зерно в 4 раза.

В организме животных концентрация йода колеблется в пределах 50-200 мг/кг массы. Пороговые концентрации йода, при которых у человека и животных развивается эндемическое увеличение щитовидной железы и эндемический зоб, составляет 2*10-4 - 40*10-4%. Считается нормальной регуляция обменных процессов йода при концентрации его 5. 10-4-40. 10-4% (Н.И. Лебедев, А.Н. Шаров, Л.А. Сесина, 1985).

Значение йода для животных определяется и тем, что этот микроэлемент является обязательным структурным компонентом гормонов щитовидной железы - тироксина (Т4) и трийодтиронина (Т3). Установлено, что в щитовидной железе из йодидов крови освобождается металлоидный йод и происходит йодирование аминокислоты тирозина, входящей в состав тиогемоглобина, из которого через моно - и дийодтирозины синтезируется тироксин, который способствует синтезу витамина А (В.И. Георгиевский, 1978).

Как утверждает Б.А. Скуковский (1988), при недостаточном поступлении йода с кормами и водой в организм, у животных снижается не только генетический потенциал продуктивности, но и воспроизводительная способность.

В.А. Париков, В.И. Слободняк, Л.В. Смирнов и др. (1996) использовали для интенсификации откорма молодняка крупного рогатого скота селеносодержащий препарат деполен пролонгировонного действия, который вводили телятам однократно, подкожно, в дозе 2мл/100кг массы тела. Введение препарата активизировало систему антиоксидантной защиты и способствовало интенсификации обменных процессов, регуляции макро- и микроэлементного гомеостаза организма, что обеспечивало снижение заболеваемости, падежа и повышение среднесуточных приростов живой массы.

Применение препаратов селена и йода в кормлении приобретает особую актуальность в связи с резким снижением количества животных кормов (основных источников селена), широким использованием продуктов микробиологической промышленности, применением технологий заготовки и подготовки кормов к скармливанию с высокотемпературными обработками (селен и йод начинает улетучиваться из кормов уже при t +50 +60 ºС). У многих веществ, обладающих канцерогенным действием, обнаружена способность резко увеличивать выделение селена из организма более чем в 20 раз и вызывать значительный дефицит этого элемента даже в случаях поступление селена в организм в дозах, превышающих обычно рекомендуемые (С.А. Шевченко, 2006; С.Н. Рассолов, О.А. Глазунова, 2008).

Железо в чистом виде почти не встречается, основой его минералов являются окислы и сульфиды железа. Природное железо представлено четырьмя стабильными изотопами с атомными массами 54, 56, 57 и 58. Получены также четыре искусственных радиоактивных изотопа, среди которых в качестве биологических индикаторов используют 55Fе и 59Fе.

Железо широко распространено в животных и растительных организмах, являясь их необходимой составной частью. Содержание железа в растениях зависит от вида (бобовые травы богаче злаковых), стадии вегетации (с возрастом уровень железа снижается), типы почвы, загрязненности среды. Много железа в листьях и оболочках семян. Богаты им солома злаковых, шроты, отруби, сухой жом, кровяная и рыбная мука, бедны - молоко, обрат, зерно злаков, корнеплоды. В растениях железо находится в виде лабильных комплексов с органическими кислотами, белками, углеводами.

Потребность всех видов сельскохозяйственных животных в железе обычно удовлетворяется за счет натуральных кормов, однако, в некоторых случаях этот элемент мажет оказаться лимитирующим: у поросят-сосунов вследствие недостатка железа в молоке матери, у телят при выпаивании им в волю цельного молока или ЗЦМ на основе обрата; у лактирующих коров при потреблении преимущественно грубых кормов, выращенных на почвах с недостатком железа; у племенных кур-несушек при интенсивной яйцекладке; у пушных зверей при кормлении сырой рыбой некоторых видов.

В организме взрослых животных концентрация железа в среднем составляет 0,005-0,006% в расчете на свежую ткань и 0,14- 0,17% в расчете на золу. Это приблизительно вдвое больше, чем цинка, и в 20 раз больше, чем меди. В теле коровы массой 600 кг содержится примерно 36 г железа, лошади массой 500 кг - 33 г, свиньи массой 100 кг - 5 г, курицы массой 2 кг - 0,16 г.

Практически все железо в теле животных находится в форме ганических соединений. Эти соединения можно разделить на группы; содержащие железо в геминовой форме (порфирит группировке) или в негеминовой форме. Геминовое железо представлено гемоглобином, миоглобином и гемсодержащими ферментами - цитохромами, цитохромоксидазой, каталазой, пероксидазой. Негеминовое железо составляют трансферрин, ферритин, и некоторые протеинаты железа.

 Поскольку железо в организме находится в гемоглобине, миоглобине, естественно, что наибольшая концентрация его наблюдается в крови, а также в органах с гемопоэтической, гемолитической и депонирующей функцией. В целом примерно 65% общего количества железа содержится в циркулирующей крови, 10% печени, 10% в селезенке, 8% в мышцах, 5% в скелете и 2% в других органах.

Среди компонентов крови железо распределено неравномерно. В эритроцитах его концентрация составляет 100-105 мг %, а в сыворотке всего 0,11-0,20 мг %. В эритроцитах железо представлено гемоглобином, в плазме входит в состав трансферрина — β-глобулииа, содержащего два атома Fе и выполняющего функцию транспортировки железа. В сыворотке крови сельскохозяйственных животных обнаружено несколько типов трансферринов, установлена генетическая обусловленность их полиморфизма и связь с некоторыми хозяйственно-полезными признаками.

Парентеральное или пероральное введение молодняку животных неорганических или органических солей железа способствует повышению уровня гемоглобина в крови и железа в сыворотке крови.

Точные механизмы извлечения железа из кормов и его абсорбции неизвестны. Предполагается, что у животных с однокамерным желудком комплексные соединения железа под влиянием соляной кислоты и пепсина желудочного сока расщепляются и трехвалентное железо, восстанавливаясь, переходит в двухвалентное. Образующиеся соли (в частности, FеС12) хорошо ионизируются и абсорбируются. Из растительных продуктов железо, по-видимому, усваивается лучше, чем из продуктов животного происхождения. Геминовое железо животных кормов слабо усваивается.

Железо всасывается в основном в двенадцатиперстной кишке. Процесс всасывания протекает в два этапа: захват железа стенкой кишки и транспорт его кишечным эпителиоцитом в кровь. В слизистой кишечника предполагается наличие особого «блокирующего» механизма абсорбции железа: при насыщении слизистой железом в форме ферритина абсорбция прекращается. Согласно другой точке зрения, абсорбция регулируется не путем блокады, а изменением в кишечнике соотношения хелатирующих агентов, образующих с железом легко или труднорастворимые комплексы. Способствуют всасыванию железа редуцирующие вещества корма или антиоксиданты: аскорбиновая кислота, токоферол, - SH-группы серосодержащих аминокислот и глютатиона. Ингибируют всасывание органические кислоты, образующие нерастворимые соли железа (оксалат, цитрат, возможно фитат), а также избыток фосфатов. Ухудшается абсорбция железа при ускорении транзита химуса.

Потребность взрослых животных в железе невелика, так как порфириновое железо, освобождающееся при разрушении эритроцитов, почти полностью реутилизируется для синтеза гемоглобина. Потребность в пищевом железе молодняка и беременных животных выше.

Абсорбция железа из натуральных кормов у взрослых животных колеблется в среднем в пределах 5-10% от принятого. Она возрастает до 15-20% при недостатке железа, в рационе, интенсивном эритропоэзе, истощении запасов железа в организме. Железо молока усваивается телятами на 15-25%, интересно отметить, что усвоение железа из сернокислых или хлористых солей также не превышает указанных величин. При высоком содержании железа в рационе дойных коров (пастбищный корм) его среднее отложение в организме составляло 1,3%, с большими индивидуальными колебаниями.

Соединения железа выполняют в организме окислительные функции. Гемоглобин осуществляет транспорт кислорода, миоглобин — его связывание и резервирование. Цитохромы, цитохромоксидаза, каталаза, пероксидаза играют важную роль в процессах тканевого дыхания. Железо содержится в простатической группе ферментов — феррофлавопротеинов (ксантиноксидазы, сукцинатдегидрогеназы), а также входит в состав кофакторовдегидрогеназы, фумаровой кислоты.

Основной признак дефицита железа у всех видов животных — микроцитарная гипохромная анемия, возникающая вследствие недостаточности синтеза гемоглобина и сопровождающаяся отставанием в росте.

В связи с высоким содержанием железа в растительных кормах, его удовлетворительной усвояемостью и реутилизацией железа в организме анемия у взрослых животных встречается редко. Чаще она проявляется у молодняка, особенно поросят, в подсосный период, поскольку запасы железа в их теле невелики (40-45 мг), интенсивность роста высока, и молоко свиноматок бедно железом (с молоком доставляется лишь 1/6-1/7железа, необходимого для нормального развития поросят в возрасте 2-4 недель). В молозиве коров содержится достаточно железа. В молоке его в несколько раз меньше (2-4 мг/кг сухого вещества при потребности телят 15-30 мг/кг).

Высокие дозы железа (особенно в виде сернокислой соли) токсичны, однако в практике их не применяют. При умеренном регулярном избытке железа в рационе происходит насыщение им печени с последующим отложением в виде коллоидальной формы окиси железа — гемосидерина, вредного для организма. При избытке железа ухудшается усвоение фосфора и меди, уменьшается отложение витамина А в печени молодняка, иногда снижаются потребление корма и привесы.

1.2 Использование пробиотических препаратов в животноводстве

Пробиотики оказывают свое действие на организм хозяина через различные медиаторы, которые представляют собой либо компоненты микробной клетки, либо продукты метаболической активности пробиотических штаммов или нормальной микрофлоры кишечника. Эти медиаторы, достигая места своего приложения в нервной, гормональной, иммунной или иных тканях, органах и системах макроорганизма, прямо или опосредованно взаимодействуют в них с соответствующими рецепторами, структурами или ферментами, следствием чего являются благоприятные для организма хозяина изменения в его биохимических, поведенческих реакциях или физиологических функциях (Б.А. Шендеров, 2001). Следовательно, пробиотики на основе живых микроорганизмов можно рассматривать, как небольшие фабрики, производящие множество разнообразных биологически активных соединений – медиаторов, участвующих в восстановлении и поддержании здоровья животных.

Позитивный эффект пробиотиков на организм хозяина проявляется как на местном уровне через нормализацию микробной экологии пищеварительного тракта, так и системно.

Механизмами положительного эффекта пробиотиков на макроорганизм по мнению И.Б. Куваевой (1999); С.А. Шевелевой (1999) являются: ингибирование роста потенциально вредных микроорганизмов в результате продукции антимикробных субстанций; конкуренция с ними за рецепторы адгезии и питательные вещества; активация иммунно-компетентных клеток и стимуляции иммунитета. Стимуляция роста представителей индигенной флоры в результате продукции витаминов и других ростостимулирующих факторов; нормализации рН, нейтрализации токсинов.

Изменение микробного метаболизма, ведущего к повышению или снижению синтеза и активности бактериальных ферментов и, как следствие этого, продукции соответствующих метаболитов (например, летучих жирных кислот, глютамина, аргинина, витаминов, пептидогликанов и т.д.), обладающих способностью местно или после проникновения в кровь и другие биологические жидкости макроорганизма непосредственно вмешиваться в метаболическую активность клеток соответствующих органов и тканей. Модулировать его морфокинетические характеристики, физиологические функции, биохимические и поведенческие реакции.

Другие механизмы (прямые эффекты пробиотиков после их всасывания из пищеварительного тракта на ферментативные и иные клеточные реакции гормональных, нервных выделительных, иммунных и других органов и тканей).

Пробиотики на основе компонентов микробных клеток или метаболитов реализуют свое позитивное влияние на физиологические функции и биохимические реакции организма хозяина либо непосредственно вмешиваясь в метаболическую активность клеток соответствующих органов и тканей, либо опосредованно через регуляцию функционирования биопленок на слизистых макроорганизма. Помимо восстановления микроэкологического статуса и связанного с ним повышения колонизационной резистентности и предотвращения транслокации потенциально патогенных микроорганизмов через слизистые многие пробиотики могут оказывать положительный эффект на организм хозяина в результате модуляции аутоиммунных реакций, изменения функций макрофагов, продукции цитокинов, активации иммунной системы, связанной со слизистыми (Б.А. Шендеров, 2001).

В связи с сосредоточением большого поголовья птицы на относительно небольших производственных площадях, особенно повышается значимость профилактических и лечебных мероприятий, направленных на снижение потерь при выращивании молодняка.

В числе средств, применяемых с целью профилактики и терапии бактериальных инфекций, ведущее место начинают занимать пробиотики.

 Большинство авторов отмечают, что при замедленном формировании микробиоцинозов пищеварительного тракта выживаемость цыплят зависит от санитарного состояния кормов, воды, окружающей среды. Микроэкологические изменения приводят к возникновению желудочно-кишечных болезней: диспепсии, гастроэнтерита, энтероколита, клоацита и токсико-септических инфекций. Поэтому в систему профилактичуских мероприятий необходимо включать применения средств для формирования нормобиоза и колонизационной резистентности, среди которых ведущее место занимают пробиотики. Анализ имеющихся литературных данных свидетельствует о многогранном воздействии пробиотиков на микроэкологию пищеварительного тракта.

Наиболее важными аспектами взаимодействия пробиотических штаммов с микрофлорой кишечника и организмом животного являются образование антибактериальных веществ, конкуренция за питательные вещества и место атгезии, изменение микробного метаболизма (увеличение или уменьшение ферментативной активности), стимуляции имунной системы, противораковое и антихолестеринемическое действия (И. Тараканов,2000).

Пробиотики используют для стимуляции неспецифического иммунитета, профилактики и лечения при смешанных желудочно-кишечных инфекциях, расстройствах пищеварения алиментарной этиологии (дисбактериозы, острые молочно-кислые ацидозы и др.), возникающих вследствие резкого изменения состава рациона, нарушений режимов кормления, технологических стрессов и других причин, переустановление микробиоценоза пищеварительного тракта после лечения антибиотиками и другими антибактериальными химиотерапевтическими средствами, замены антибиотиков в комбикормах для молодняка животных, пушных зверей и птицы (И. Тараканов, 1998), улучшения процессов пищеварения, ускорения адаптации животных к высокоэнергетическим рационам и небелковым азотистым веществам, повышения эффективности использования корма и продуктивности животных (А.И. Тимошко, 1986).

По мнению Р.В. Веселухина (1971), И.Жуковой (1966), участие симбионтных микроорганизмов в азотистом (белковом) питании является одной из основных их функций. В результате сложных биохимических процессов, протекающих в желудочно-кишечном тракте хозяина, микроорг