Витамины и минеральные вещества
Содержание
Введение. 3
1. История открытия витаминов. 5
2. Классификация витаминов. 9
3.Минеральные вещества. 14
4. Прием витаминов и минеральных веществ. 15
5.Витамины в профилактике и лечении заболеваний. 16
Заключение. 18
Литература. 20
Витамины известны нам уже более 100 лет. О них написано и сказано достаточно много. Но что такое витамины? В чем их отличие от прочих биологически активных веществ? Когда-то их насчитывалось более двух десятков, но сейчас к витаминам относят всего 13 соединений. В то же время имеются, так называемые, "витаминоподобные вещества". В чем их отличие от витаминов? Начнем с определения понятия "витамины".
Витамины - "незаменимые органические вещества, необходимые для поддержания жизненно важных функций организма, участвующие в регуляции биохимических и физиологических процессов", "биомолекулы с преимущественно регуляторными функциями, поступающие в организм с пищей", "незаменимые (эссенциальные) пищевые вещества, которые не образуются в организме или образуются в недостаточном количестве".
Итак, витамины - это чрезвычайно разнообразные по своему химическому строению вещества, играющие исключительно важную роль в обмене веществ. Как правило, витамины не синтезируются в организме человека. Часть витаминов синтезируется кишечной микрофлорой или образуются в количествах, недостаточных для обеспечения нормальной работы организма человека, поэтому они должны регулярно поступать с пищей или и виде БАД.
В отличие от других незаменимых пищевых веществ (аминокислот, полиненасыщенных жирных кислот, углеводов), витамины не являются пластическим материалом или источником энергии. Их основные функции сводятся к участию в работе биокатализаторов (в качестве коферментов), участию в регуляции (в качестве гормоноподобных соединений), подавлению образования свободных радикалов. Каждый витамин выполняет присущую только ему специфическую функцию и не может быть заменен другим веществом. Если в организме не хватает какого-либо витамина, всегда возникают сбои или более серьезные нарушения в обмене веществ, что приводит к заболеваниям, причина которых обусловлена витаминной недостаточностью.
Организму требуется очень незначительное количество этих биологически активных веществ - от нескольких десятков миллиграмм до нескольких микрограмм в день (исключение составляет витамин С, которого необходимо на порядок больше). Причем, необходимы одновременно все витамины. В идеале наше питание должно быть разнообразно и насыщено различными витаминами. Но не существует "идеально" сбалансированной пищи, в которой присутствовали бы все группы витаминов в необходимом количестве. Дефицит витаминов в питании, в той или иной степени - это объективная реальность питания современного человека, которая проявляется независимо от качества и количества потребляемой пищи.
Поэтому каждый человек нуждается в обязательном регулярном приеме дополнительного количества витаминов для поддержания их баланса в организме. Для отдельных категорий людей - спортсмены, дети и подростки, пожилые люди, потребность в витаминах более высокая. Увеличена она и для людей, имеющих наследственно обусловленные нарушения обмена веществ и процессов регуляции, в которых принимают участие витамины. Резко повышается потребность в витаминах и при различных заболеваниях (острых и хронических), при высоких физических и психоэмоциональных нагрузках, в экстремальных условиях. Все эти категории людей нуждаются не просто в дополнительном приеме поливитаминных препаратов. Им требуется назначение более высоких - близких к терапевтическим или терапевтических дозировок отдельных витаминов. Но в какой форме, сколько и как долго нужно принимать витамины? В настоящее время на эти вопросы сложно получить четкие ответы. Данные о витаминах противоречивы, неоднозначны, имеются существенные пробелы во многих областях знаний о витаминах, об их обмене в организме. И хотя в течение многих лет люди принимают препараты витаминов, проблема витаминной недостаточности продолжает существовать.
Конечно, коррекцию витаминной недостаточности необходимо начинать с питания, которое лежит в основе здоровья каждого человека. Организация рационального и сбалансированного питания, ориентированного на индивидуальные особенности здоровья человека, а также условия экологии и ритм жизни, является тем базисом, который позволяет в значительной степени сгладить дефициты в тех или иных незаменимых пищевых веществах, включая витамины. Но для этого необходимо знать основы физиологии питания, понимать роль, которую витамины выполняют в организме человека. Эти знания позволят более осознанно подходить к профилактике и лечению с помощью витаминов основных заболеваний. В настоящее время компания NSP предлагает огромный выбор самых разных витаминных препаратов, которые предназначены и для детей, и для взрослых, для больных и для здоровых.
1. История открытия витаминов
К концу XIX пека наука о питании все чаще стала приходить к выводу о том, что для здоровья человека недостаточно одних белков, жиров и углеводов. Необходимы и другие вещества, недостаток которых вызывает болезни и может привести к смерти. Опыт длительных морских путешествий показал, что при достаточных запасах продовольствия люди могут умереть от цинги. В XIX веке в странах Юго-Восточной и Южной Азии, где основным продуктом питания был рис, и люди начали широко употреблять его в обработанном - шлифованном виде, стало распространяться заболевание, получившее название "бери-бери", от которого умирали десятки тысяч людей, не испытывающих нужду в питании. Почему это происходило?
На этот вопрос не было ответа до тех пор, пока в 1880 году русский ученый-физиолог Н.И. Лунин, изучавший роль минеральных веществ в питании, заметил, что мыши, получавшие искусственный рацион, составленный из известных компонентов молока: казеина, жира, сахара и солей, заболевали и погибали. А мыши, получавшие натуральное молоко, были здоровы. "Из этого следует, что в молоке... содержатся еще другие вещества, незаменимые для питания". "Обнаружить эти вещества и изучить их значение в питании, было бы исследованием, представляющим огромный научный и практический интерес" - сделал вывод ученый.
Впервые "бери-бери" подробно описал японский морской врач Такаки (Takaki) в 1884 году, который высказал мысль, что это заболевание является "болезнью пищевой недостаточности". В 1897 году нидерландскому врачу Христиану Эйкману (Eijkman), работавшему на острове Яве, удалось найти причину болезни "бери-бери". В этом ему помогли куры, которые питались шлифованным рисовым зерном и заболевали похожей болезнью. Однако стоило заменить очищенный рис на неочищенный, как болезнь проходила. Таким образом, Эйкман сделал вывод о том, что в наружной оболочке неочищенных рисовых зерен содержится жизненно необходимое пищевое вещество.
В 1911 польский ученый-химик Казимир Функ (Funk) году выделил из рисовых отрубей это вещество, которое в самой малой дозе излечивало голубей от полиневрита. В 1912 году он определил его химический состав и, обнаружив в нем аминогруппу, назвал его "витамин" - "амин жизни" (от слова "vita" - жизнь). После большого числа исследований в 1920-1334 гг. удалось установить химическую формулу этого витамина, и ему дали название "анейрин". Но из-за содержания в нем серы, анейрин в дальнейшем получил название "тиамин". В 1936 году Уильяме (Williams) осуществил синтез тиамина.
Авитаминоз А был известен с глубокой древности. Еще в Древнем Египте и Китае для лечения болезни глаз рекомендовали применять печень. В 1909 году Степп (Stеpp) обнаружил, что в жире содержится некий фактор роста. В 1913 году Мак-Коллем (McCollum) и Денис (Devis) назвали активное начало, содержащееся в сливочном масле и рыбьем жире "фактором А", а в 1916 году он получил название "витамина А". Позднее было показано, что содержащийся в пище каротин, превращается в организме животных в витамин А. В 30-х годах была установлена химическая структура и осуществлен синтез витамина А.
В 1913 году Функ выделил из рисовых отрубей никотиновую кислоту, но только в 1926 году Гольдбергер (Goldberger) открыл термостабильный фактор в дрожжах и предположил, что он является антипеллагрическим фактором. Синонимами никотиновой кислоты стали: "фактор РР" (Реllagra-Prеventativе factor- предотвращающий пеллагру), "ниацин" (nicotinic acid-niacin), "никотинамид" и "ниацинамид".
В 1913 году Осборн (Osborn) и Мендель (Mendel) доказали присутствие в молоке вещества, необходимого для роста животных. Но лишь в 1938 году Кун (Kulm) определил химическую формулу и осуществил синтез флавина, названного "лактофлавином" или витамином В2. В настоящее время он получил название "рибофлавин", поскольку в его состав входит рибоза.
Еще в 1901 году Уильдьерс установил вещество, необходимое для роста дрожжей и предложил его назвать "биосом" (от греческого "bios" -жизнь). В 1927 году Боас (Boas) обнаружил тормозящее действие вещества, содержащегося в ряде пищевых продуктов на токсический агент яичного белка (овидин), назвав его "фактором Х", который затем получил название "витамин Н" или - "коэнзим R". Позднее Сент-Дьордьи (Sеnt-Gyorgy) определил химическую структуру этого витамина. В кристаллическом виде это вещество впервые выделил в 1935 году Кегль (Kegl) из желтка яиц и предложил назвать его "биотин".
Лечебное действие свежих овощей и фруктов при цинге было известно еще во времена Гиппократа. В конце XIX века русский врач В.В. Пашутин установил, что цинга возникает в результате отсутствия в растительной пище определенного фактора. В 1912 году Хольст (Holst) и Фрелих (Frolich) в опытах на морских свинках установили присутствие в свежих овощах водорастворимого фактора, предохраняющего от цинги. В 1919 году Друммон (Drummond) дал этому веществу название "витамин С". В 1928 году Сент-Дьордьи удалось выделить и определить химическую формулу этою витамина, которое было названо "гексуроновой кислотой", но затем получило название "аскорбиновая кислота" (предотвращающая скорбут - цингу).
В 1920 году впервые выявили роль витамина Е в репродуктивном процессе. В 1922 году Эванс (Evans) установил, что при нормальной овуляции и зачатии у беременных крыс происходила гибель плода в случае исключения из пищевого рациона жира. В 1936 году путем экстракции из масел ростков зерна были получены первые препараты витамина Е, названного "альфа - и бета- токоферолом" (от слов "tocos" - рождение и "phero" - носить). Биосинтез витамина Е был осуществлен в 1938 году швейцарским химиком Паулем Каррером (Karrer).
В 1926 году В.В. Ефремов высказал предположение, что макроцитарная анемия у беременных женщин может быть связана с авитаминозом и что антианемический витамин содержится в печени, которая им помогала в лечении. В 30-х годах Митчел (Mitchell) и Снел (Snell) выделили из листьев шпината фракцию, стимулирующую рост ряда бактерий в культуре, которая получила название "фолиевой кислоты" (от слова Folium - лист). В 1945 году из печени и дрожжей была изолирована, а затем и синтезирована фолиевая кислота, которая представляла птероилглютаминовую кислоту.
В том же 1926 году Майнот (Minot) и Мерфи (Murphy) открыли специфическое лечебное действие печени при злокачественном малокровии. Но лишь в 1948 году Рикс (Rickes) и Спайс (Spies) смогли выделить из печени антианемический фактор, названный витамином В12.
В 1929 году было высказано предположение о существовании пищевого фактора, влияющего на свертываемость крови. В 1935 году датский химик Хенрик Дам (Dam) выделил жирорастворимое вещество, которое назвали витамином К (coagulation vitamin - витамин, повышающий свертываемость крови).
В 1933 году Уильяме (Williams) открыл существование фактора роста дрожжей, а в 1938 году он изолировал его из печени и расшифровал химическую структуру. Оно получило название "пантотеновая кислота" (от греческого слова "pantos" - вездесущий), так как было обнаружено во многих животных и растительных тканях.
В 1935 году Берч (Birch), Сент-Дьордьи и Харрис (Harris) установили, что пеллагра у крыс не связана с недостатком никотиновой кислоты, как полагал Гольдбергер, а вызвано отсутствием другого фактора, который был назван витамином B6 или "пиридоксином". Обозначение этого витамина "В6" связано с тем, что он был открыт позднее витаминов В3, В4 и B5 (факторов роста голубей и крыс), не имеющих существенного значения для человека.
2. Классификация витаминовОфициальное название | Синоним | Форма витамина | Уровень потребления | Адекватный уровень потребления* |
Жирорастворимые витамины | ||||
ретинол | витамин А | две формы | мг | 1,0 |
каротиноиды | семейство | мг | 15,0** | |
кальциферол | витамин D | семейство | мкг | 5,0* |
токоферол | витамин Е | семейство | мг | 15 |
нафтохинон | витамин К | две формы | мкг | |
Водорастворимые витамины | ||||
тиамин | витамин B1 | моносоединение | мг | 1,7 |
рибофлавин | витамин В2, лактофлавин | две формы | мг | 2,0 |
никотиновая кислота | витамин В3, РР, ниацин | две формы | мг | 20 |
пантотеновая кислота | витамин B5 | моносоединение | мг | 5,0 |
пиридоксин | витамин В6 | семейство | мг | 2,0 |
фолиевая кислота | витамин В9, Вс | семейство | мкг | 400 |
кобаламин | витамин B12 | семейство | мкг | 3,0 |
аскорбиновая кислота | витамин С | моносоединение | мг | 70 |
биотин | витамин Н | моносоединение | мкг | 50 |
* - МЗ России, 2005 г.
** - рекомендации Немецкого Общества Питания (DGE) - 2 мг бета-каротина в день; рекомендации Национального Института Рака (NCI) США - 5-6 мг бета-каротина в день.
*** - RDA, Европа, 1990 г. взрослые мужчины - 80 мкг, женщины - 65 мкг, юноши - 70 мкг, девушки - 30 мкг, мальчики - 20 мкг, девочки - 5 мкг.
Классифицировать витамины по химической структуре невозможно - настолько они разнообразны и относятся к самым разным классам химических соединений. Однако их можно разделить по растворимости: на жирорастворимые и водорастворимые.
К жирорастворимым витаминам относят 4 витамина: витамин А (ретинол), витамин D (кальциферол), витамин Е (токоферол), витамин К, а также каротиноиды, часть из которых является провитамином А. Но холестерин и его производные (7-дегидрохолесторол) также можно отнести к провитамину D.
К водорастворимым витаминам относят 9 витаминов: витамин B1 (тиамин), витамин В2 (рибофлавин), витамин В5 (пантотеновая кислота), витамин РР (ниацин, никотиновая кислота), витамин В6, (пиридоксин), витамин В9 (витамин Вс, фолиевая кислота), витамин В12 (кобаламин) и витамин С (аскорбиновая кислота), витамин Н (биотин)
Часть витаминов представлена в форме моносоединений - 4 витамина:
Витамин B1 - тиамин
Витамин B5 - пантотеновая кислота
Витамин С - аскорбиновая кислота
Витамин Н - биотин
Все остальные - 9 витаминов представляют собой группы соединений, обладающих похожими свойствами:
Витамин А. Известны два соединения с активностью витамина А: ретинол (витамин А1) ретиналь (витамин А2). В тканях ретинол превращается в сложные эфиры: ретинилпальмитат, ретинилацетат и ретинилфосфат. Витамин А и его производные находятся в организме в транс конфигурации, лишь в сетчатке глаза образуются цис-изомеры ретинола и ретиналя.
Каротиноиды. Каротиноиды встречаются практически во всех животных и растениях, особенно в организмах, развивающихся на свету. Описано около 563 вида каротиноидов (Штрауб О., 1987), не считая их цис- и транс-изомеров. Основными каротиноидами и полиенами являются:
- альфа- и бета-каротины и бета-ano-8-каротиноиды,
- бета-криптоксантин, астаксантин, кантаксантин, цитроксантин, неоксантин, виолаксантин, зеаксантин,
- лютеин,
- ликопин,
- фитоен, фитофлуен
Большинство каротиноидов является ксантофиллами, селективно поглощают свет, имеют обычно желтый цвет и придают желтую окраску осенним листьям. К основным ксантофиллам относятся лютеин и зеаксантин. Кроме ксантофиллов, существует группа каротинов (альфа-, бета- и гамма-каротины), к которым принадлежит наиболее известный каротиноид - бета-каротин, наиболее активный из всех каротиноидов. При расщеплении молекулы бета-каротина может образовываться 2 молекулы ретиналя, альфа- гамма- формы образуют лишь по одной молекуле витамина А. Однако в процессе метаболизма превращение бета- каротина в ретинол происходит и соотношении 6:1, т.е. из 6 мг бета-каротина образуется 1 мг ретинола. Для всех каротиноидов это соотношение составляет 12:1 .
Витамин D. Из многочисленных соединений, обладающих активностью витамина D (кальциферолы), наиболее важны для человека эргокальциферол (витамин D2) и холекальциферол (витамин D3). Основной предшественник витамина D - провитамин 7-дегидрохолестерин содержится в пище животного происхождения, а также образуется в слизистой оболочке тонкой кишки и в печени. В коже под воздействием определенного спектра естественного ультрафиолетового облучения он превращается в холекальциферол (витамин D3). Следует подчеркнуть, что при искусственном загаре витамин D в коже не образуется. В пище растительного происхождения содержится провитамин эргостерин, который в коже может превратиться в эргокальциферол (витамин D2). В организме человека активность обоих групп витаминов приблизительно одинакова. Эрго- и холекальциферолы, транспортируются в печень, где из них образуется 25-гидроксикальциферал, который в дальнейшем в почках гидроксилируется до 1,25-дигидроксикальциферола. Эта активная форма витамина D, поступая в кишечник, вызывает образование специфического кальций (Са)-связывающего белка, который усиливает всасывание Са в тонкой кишке. Одновременно этот метаболит ускоряет реабсорбцию Са в почечных канальцах.
Таким образом, недостаточность витамина D может наблюдаться не только при его дефиците в составе питания, но и при недостаточном образовании в коже при отсутствии солнечного облучения, а также и при заболеваниях печени и почек.
Витамин Е. Это группа из восьми химически родственных соединений - четырех токоферолов (альфа-, бета-, гамма- и дельта-) и четырех токотриенолов, активность которых в качестве витамина Е сильно различается. Наиболее активной формой витамина является D-альфа-токоферол, однако дельта-токоферол обладает более высокой антирадикальной активностью.
Витамин К. Широко распространен в природе и представлен в двух формах. В зеленых растениях и водорослях содержатся витамины ряда K1 (филлохиноны). Продукты животного происхождения и бактерии содержат витамины ряда К2 (менахиноны).
Витамин В2. Рибофлавин (лактофлавин) в организме человека представлен в двух формах: флавинмононуклеотида и флавинадениндинуклеатида.
Витамин PP. Ниацин (никотиновая кислота) - два соединения, включающих никотиновую (пиридин-5-карбоновую) кислоту и никотинамид, имеющие одинаковую активность. Коферментные формы - НАД и НАДФ функционируют в составе более чем 100 дегидрогеназ.
Витамин В6. Объединяет пиридоксин, пиридоксамин и пиридоксаль,а также их фосфаты. Витамин поступает с пищей в форме пиридоксина, который фосфорилируется в тонкой кишке и в печени, а затем окисляется до пиридоксальфосфата. В качестве коферментов работают пидоксаль-5-фосфат и пиридоксаминфосфат.
Витамин В9. Фолиевая кислота (фолацин, птероилглутаминовая кислота) - группа родственных соединений, обладающих сходной биологической активностью, представлены фолиевой кислотой, ее многочисленными коферментными формами, а также ди- и полиглутаматами. При всасывании в кишечнике образуется тетрагидрофолиевая кислота и продукт ее метилирования.
Витамин В12. Кобаламин (цианкобаламин) - общее название группы соединений, которые характеризуются наличием атома кобальта в центре порфиринового кольца. В организме активностью витамина В12 обладают 6 форм кобаламина: цианкобаламин, гидроксикобаламин, кобаламин R, кобаламин S, метилкобаламин и аденозилкобаламин. Кобаламин образует две коферментные формы: метилкобаламин и дезоксиаденозилкобаламин.
С точки зрения физиологического действия все витамины можно разделить на три основных группы: витамины, обладающие свойствами коферментов, витамины, обладающие способностью к антиоксидантной (антирадикальной) активности и витамины, проявляющие гормоноподобное действие.
3.Минеральные вещества
Минеральные вещества подразделяются на макроэлементы и микроэлементы. К первым относятся кальций, фосфор, магний, натрий, калий, хлор и сера. Ко вторым — железо, цинк, йод и фтор.
Кальция взрослому человеку требуется около 800 мг в день. Содержится он в молоке и молочных продуктах.
Фосфора требуется около 1200 мг в день. Его много в фасоли, сырах, горохе, овсяной и перловой крупах, в рыбе, хлебе и мясе.
Магния требуется около 400 мг в день. Он содержится в орехах, овсяной крупе, горохе, фасоли и хлебе.
Натрия требуется около 1 г в день. Внутрь он попадает с хлебом и солью. В принципе, злоупотреблять солью не следует, но в условиях жаркого климата недостаток соли в организме может обернуться крупными неприятностями.
Калия требуется около 2,5—5 г в день. Много его содержится в фасоли, горохе, картофеле и яблоках.
Хлор необходим в количестве около 2 г в день. В основном, он попадает в организм при употреблении поваренной соли.
Серы требуется около 1 г в день. Обычно она весьма пропорционально распределена среди общеупотребимых пищевых продуктов, поэтому гарантированно попадает внутрь при употреблении стандартного суточного рациона...
Что касается микроэлементов, то железа требуется организму около 14 мг в день. Очень много железа в бобовых растениях. Есть железо и в белом хлебе, но там оно содержится в несколько меньшем количестве.
Цинк требуется организму в количестве от 8 до 20 мг. Содержится он в тех же бобовых и в продуктах животного происхождения.
Йода требуется около 150 микрограммов в день. Много его в морской капусте и в рыбе. Правда, при длительном хранении и при термической обработке эти продукты быстро теряют содержащийся в них йод.
Фтора, от недостатка которого появляется такая неприятная вещь, как кариес, требуется около 3 мг в день. Много его содержится в морской рыбе и в чае. Однако злоупотреблять им не следует, так как это может вредно отразиться на состоянии зубов.
4. Прием витаминов и минеральных веществ
В основе обеспеченности организма витаминами, также как и другими важнейшими пищевыми веществами, должно лежать рациональное и сбалансированное питание. Но даже идеально сбалансированный пищевой рацион современного человека не способен обеспечить его всеми витаминами в необходимом количестве, все равно будет существовать определенный дефицит тех или иных витаминов. Поэтому прием поливитаминных препаратов - является каждодневной необходимостью даже для здорового человека. Поливитамины необходимо принимать регулярно - ежедневно на протяжении всего года.
Дефицит витаминов будет возрастать при высоких физических и психических нагрузках, острых и хронических заболеваниях и в других экстремальных условиях. У многих людей в силу особенностей обмена веществ и здоровья постоянно увеличена потребность в отдельных витаминах.
В экстремальных ситуациях и у отдельных людей увеличена потребность в витаминах, которые необходимо принимать в большем количестве в определенные периоды времени или постоянно.
Витамины лучше принимать во время еды, два - три раза в день или в пролонгированной форме. Это замедляет всасывание витаминов в кишечнике, снижает пиковые нагрузки на метаболические системы и приводит к более полной их утилизации в организме. Напротив, однократный прием суточной дозы витаминов или употребление их натощак существенно снижает усвояемость и утилизацию витаминов и увеличивает их потери. Витамины необходимо вводить медленно и равномерно.
Критерием потребности в витаминах являются клинические симптомы витаминного дефицита. Ориентиром в потреблении витаминов в обычных условиях является не средняя, а верхняя граница нормы (верхний допустимый уровень потребления). Витаминов должно быть много.Умеренное избыточное потребление витаминов (за исключением жирорастворимых) ведет к их повышенному выведению из организма и не приносит пользы. Значительный избыток вводимых витаминов может дезорганизовать работу метаболических систем организма и вызывает явление гипервитаминоза (жирорастворимые витамины способны аккумулироваться в организме). Прием витаминных препаратов должен быть адекватен текущей физиологической потребности, которая является величиной переменной. Потребность в витаминах всегда индивидуальна.
5.Витамины в профилактике и лечении заболеваний
Целесообразно комбинировать различные витамины, для того чтобы создавать специализированные комплексы, предназначенные для решения определенных задач, связанных с профилактикой и лечением отдельных заболеваний. В этом случае универсальные поливитаминные препараты мало подходят для решения таких задач, так как требуются совершенно иные пропорции в содержании витаминов. В качестве примера можно привести комплексы витаминов-антиоксидантов, которые необходимы для борьбы с чрезмерным образованием свободных радикалов и гидроперекисей липидов.
Витаминнные препараты - антиоксиданты
Комплекс витаминов-антиоксидантов, предназначенный для профилактики и лечения заболеваний, связанных с увеличенным образованием свободных радикалов и перекисей липидов, прежде всего должен включать основные витамины, обладающие антирадикальной активностью (витамин С и витамин Е). В этом случае весьма показано назначение каротиноидов, которые также обладают высокой антирадикальной активность. Наряду с витаминами полезно включать и витаминоподобные вещества (биофлавоноиды и липоевую кислоту). Наконец, антирадикальная защита может оказаться менее эффективна, если в составе комплекса витаминов будут отсутствовать такие микроэлементы, как селен, цинк, медь и марганец, которые входят в состав первичных антиоксидантов - ферментов.
Витамины:
Витамин А
Витамин
Каротиноиды
Витамин С
Витаминоподобные вещества:
биофлавоноиды (рутин, катехины),
липоевая кислота
Микроэлементы:
селен,
цинк,
медь,
марганец.
Потребность в витаминах при различных рационах питания
Избыток углеводов питании: увеличение потребности в витаминах В2, В2
Избыток белка в питании: увеличение потребности в витаминах В2, В6 и В12
Недостаток белка в питании: увеличение потребности в витаминах В2, С и никотиновой кислоте.
Заключение
Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называть авитаминозами. Если болезнь возникает вследствие отсутствия нескольких витаминов, её называют поливитаминозом. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходиться иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.
Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.
В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментных систем. Известно, что многие витамины входят в состав ферментов в качестве компонентов их простетических или коферментных групп.
Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё неясен, поэтому пока ещё не представляется возможность трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных коферментных систем.
С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие "замаскированные подвитамины" вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен и происходит гибель бактерий.
В настоящее время витамины можно характеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными её компонентами.
Витамины - необходимый элемент пищи для человека и ряда живых организмов потому, что они не синтезируются или некоторые из них синтезируются вне достаточном количестве данным организмом. Витамины - это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Они могут быть отнесены к группе биологически активных соединений, оказывающих своё действие на обмен веществ в ничтожных концентрациях.
Литература
1. Бышевский Л.Ш., Терсенов О.А. Биохимия для врача. Екатеринбург, 1994.
2. Кравцова Л.А., Верченко Е.Г., Калинин Л.А. и др. Применение ку-декана (коэнзима Q10) в клинической практике. М., 2004.
3. Продукты для фармацевтической и пищевой промышленности. BASF Helth & Nutrition, 2002.
4. Ренсли Д., Донелли Д., Рид. Н. Пища и пищевые добавки. М, 2004.
5. Рысс С.М. Витамины. Ленинград, 1963.
6. Спиричев В.Б. Сколько витаминов человеку надо? М., 2000.
7. Спиричев В.Б., Коденцова В.М., Вржесинская О.А. и др. Методы оценки витаминной обеспеченности населения. М., 2001
8. Спиричев В.Б., Шатнюк Л.Н., Позняковский В.М. Обогащение пищевых продуктов витаминами и минеральными веществами. Новосибирск, 2004.
9. Шилов П.И., Яковлев Т.Н. Справочник по витаминам. М., 1960.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Восстановительные средства после напряженной умственной и производственной деятельности
Реферат Восстановительные средства после напряженной умственной и производственной деятельностиСодержание1. Утомление и восстанов
- Вплив віку на шкірний аналізатор
ПланВступ................................................................................................................ 2Розділ 1. Морфо-функціональна структура шкіряного аналізатора....
- Вплив збудників захворювань вірусної етіології на реплікативну активність віл у хворих на віл-інфекцію
КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТІМЕНІ ТАРАСА ШЕВЧЕНКАБАБІЙ НАТАЛІЯ ОЛЕКСАНДРІВНАУДК 616 (9.578.27:36-002+98:578.828):616-036ВПЛИВ ЗБУДНИКІВ ЗАХВОРЮ
- Вікові особливості реакції організму на гіпоксичний стрес: механізми та шляхи підвищення стійкості до гіпоксії
ІНСТИТУТ ГЕРОНТОЛОГІЇ АКАДЕМІЇ МЕДИЧНИХ НАУК УКРАЇНИУДК 612. 67: 612. 23: 612. 261ВІКОВІ ОСОБЛИВОСТІ РЕАКЦІЇ ОРГАНІЗМУ НА ГІПОКСИЧНИЙ СТРЕС:МЕХА
- Анализ новых подходов к организации сестринской работы в операционном блоке многопрофильной больницы
Дипломная работаАнализ новых подходов к организации сестринской работы в операционном блоке многопрофильной больницыВведениеРеформ
- Аффективные нарушения в наркологии
Зависимость от психоактивных веществ (ПАВ) является одной из наиболее актуальных проблем, стоящих перед современной медициной. Извест
- Венерические заболевания
Венерические заболевания – инфекционные болезни женской и мужской мочеполовых систем, заражение которыми происходит половым путем. П