Скачать

Виробництво кормового білка

Вступ

Білки є обов'язковими компонентами клітин будь-якого живого організму, що виконують життєво важливі функції: каталітичний, регуляторний, транспортний, біоенергетичні, захист від інфекції й дії стресових факторів, структурні, запасні й інші. У вегетативній масі рослин на частку білків доводиться 5 – 15 % сухої речовини, у зерні - 8 – 18 %. У різних тканинах організму людини й тварин зміст білків звичайно від 20 до 80 % їхньої сухої маси, що становить у середньому 40 – 50 %.

Для утворення клітин і тканин організму, а також підтримка його життєвих функцій повинен здійснюватися постійний синтез структурних й інших форм білків. До складу білків входять 20 амінокислот і два аміди (аспарагін і глютамін).

Головними джерелами незамінних амінокислот для людини є білки тваринного або рослинного походження, що входять до складу їжі, а для с/г тварин - головним чином рослинні білки. Вступники з їжею або кормом білкові речовини під дією ферментів шлункового соку гідролізуються до амінокислот, які потім використаються для утворення білкових молекул людського організму.

Всі незамінні амінокислоти повинні втримуватися в білках їжі в певних співвідношеннях. Якщо хоча б одна амінокислота втримується в недоліку, то інші амінокислоти, опинившись в надлишку, не використаються для синтезу білків. У таких умовах буде потрібно додаткова кількість харчового або кормового білка.

З метою запобігання перевитрати кормів необхідно контролювати збалансованість білків корму по змісту незамінних амінокислот і загальна кількість білка в кормі. Кормові й харчові білки, що мають оптимальний зміст незамінних амінокислот, називають біологічно повноцінними білками.

Біологічна цінність більшості тваринних білків становить 90 – 95 %, білків вегетативної маси бобових трав - 80 – 90 %, білків овочів, трав'янистих рослин, насіння олійних культур - 75 – 85 %, злакових культур - 60 – 70 %, кукурудза - 52 – 58 %.

Найбільш збалансований зміст незамінних амінокислот мають білки насіння сої. У них бракує до еталона тільки метіоніну й триптофану. Відносно високу біологічну цінність мають також білки зерна рису й гороху. У білках зерна пшениці і ячменя дуже мало втримується лізина, метіоніну й ізолейцину, а в білках зерна кукурудзи ще й триптофану. Внаслідок того, що білки сої добре збалансовані по амінокислотному складі і їхній зміст у насінні досягає 35 - 40%, ця культура має важливе значення як найдешевше джерело харчового й кормового білка.

Зернові культури становлять велику питому вагу в структурі кормо виробництва нашої країни. У середньому на частку зернових доводиться близько 50 % від загальної кількості кормового білка. З метою балансування кормів, що включають як основний компонент зерно злакових культур, по білку й незамінних амінокислотах звичайно застосовують концентровані білкові добавки, називані комбікормами.

Високою інтенсивністю синтезу білків відрізняються багато мікроорганізмів, причому білки мікробних клітин мають підвищений зміст незамінних амінокислот. Мікроорганізми як джерела кормового білка мають ряд переваг у порівнянні з рослинними й навіть тваринними організмами. Вони відрізняються високим (до 60 % сухої маси) і стійким змістом білків.

При використанні мікроорганізмів на обмеженій площі можна організувати промислове виробництво й одержувати більшу кількість кормових концентратів у будь-який час року, причому мікробні клітини здатні синтезувати білки з відходів сільського господарства й промисловості й, таким чином, дозволяють одночасно вирішувати іншу важливу проблему - утилізацію цих відходів з метою охорони навколишнього середовища.

Мікроорганізми мають ще одну коштовну перевагу - здатність дуже швидко нарощувати білкову масу. Як джерела кормового білка найбільше часто використають різні види дріжджів і бактерій, мікроскопічні гриби, одноклітинні водорості, білкові коагуляти трав'янистих рослин. Головною характеристикою біологічної (живильної) цінності білка є збалансованість його амінокислотного складу. Для характеристики збалансованості амінокислотного складу білків Всесвітня організація охорони здоров'я рекомендує прийняти в якості еталонного амінокислотний склад білків курячих яєць або жіночого молока.

Для оцінки білків використається показник відносини незамінної амінокислоти до загальної кількості незамінних амінокислот у білку. Відношення виражається у відсотках від відповідного відношення для даної амінокислоти в еталонному білку і є показником швидка амінокислоти. Найменша величина з отриманих показників швидка характеризує живильну цінність білків продукту. Амінокислота, що має найменший показник швидка, називається першою амінокислотою, що лімітує, даного продукту. Амінокислота, швидкий якої найбільш близький до скору першої амінокислоти, що лімітує, називається другою амінокислотою, що лімітує. Живильна цінність багатьох білків тваринного походження наближається до еталона, а живильна цінність рослинних білків виявляється нижче. Так, білок пшениці має швидкий усього близько 50 %. Білки злаків взагалі характеризуються низьким змістом лізину.

Білкова цінність кормових і харчових продуктів, що складаються в основному зі злаків, може бути підвищена додаванням до них біомаси мікроорганізмів, що містить багато білка й лізину, - 1-й амінокислоти, що лімітує, у білках злаків.

Перетравлюємість біомаси дріжджів в організмі тварин і людини звичайно становить 80 – 90 %. Перетравлюємість білка яєць, молока, м'яса й риби близька до 100 %, а багатьох рослинних білків - близько 80 %.

Вхідні до складу білка амінокислоти засвоюються краще, ніж вільні амінокислоти, що додають у корм.


1. Білки – життєво важливі компоненти клітин живого організму

1.1 Сировина та середовища для культивування

1.1.1 Кормові дріжджі

Дріжджі вперше стали використати як джерело білка для людини й тварин у Німеччині під час першої світової війни. Була розроблена промислова технологія культивування пивних дріжджів.

Як вихідна сировина для одержання кормового білка звичайно використаються відходи целюлозної й деревопереробної промисловості, солома, бавовняна лушпайка, кошики соняшника, лляна багаття, стрижні кукурудзяних качанів, бурячна меласса, картопляна мезга, виноградні вижимки, пивна дробина, верхівковий мало розкладений торф, барда спиртових виробництв, відходи кондитерській і молочної промисловості.

Здрібнена рослинна сировина, що містить велика кількість клітковини, геміцеллюлоз, пентозанов, піддають кислотному гідролізу при підвищеному тиску й температурі. У результаті 60 – 65 % в них полісахаридів гідролізуються до моносахаридів. Отриманий гідролізат відокремлюють від лігніну. Надлишок кислоти, застосовуваної для гідролізу, нейтралізують вапняним молоком або аміачною водою. Після охолодження й відстоювання в гідролізат додають мінеральні солі, вітаміни й інші речовини, необхідні для життєдіяльності мікроорганізмів. Отриману в такий спосіб живильне подавати середовище у ферментерний цех, де вирощують дріжджі.

Для культивування на гідролізатах рослинних відходів найбільш ефективні дріжджі пологів Candida, Torulopsis, Saccharomyces, які використають як джерело вуглецю гексози, пентози й органічної кислоти.

Для одержання кормових дріжджів застосовують технологію із глибинного вирощування в спеціальних апаратах - ферментерах, у яких забезпечується режим постійного перемішування суспензії мікробних клітин у рідкому живильному й з оптимальні умови аерації. З метою підтримки заданого температурного режиму в конструкції ферментера передбачається система відводу надлишкового тепла. Робочий цикл вирощування культури дріжджів триває близько 20 годин. По закінченні робочого циклу культуральна рідина разом із суспендированними в ній клітинами дріжджів виводиться з ферментера, а в нього знову подається живильний субстрат і культура дріжджових клітин для вирощування.

Виведену з ферментера суспензію мікробних клітин подають на флотаційну установку, за допомогою якої відокремлюють біомасу дріжджів від культуральної рідини. У процесі флотації суспензія спінюється, при цьому мікробні клітини спливають на поверхню разом з піною, що відокремлюється від рідкої фази. Після відстоювання дріжджову масу концентрують у сепараторі. Для досягнення кращої перетравності дріжджів в організмі тварин проводять спеціальну обробку мікробних клітин (механічна, ультразвукова, термічна, ферментативна), що забезпечує руйнування їхніх клітинних оболонок. Потім дріжджову масу упарюють до необхідної концентрації й висушують, вологість готового продукту не повинна перевищувати 8 – 10 %.

Гарний субстрат для вирощування кормових дріжджів - молочна сироватка, що є виробничим відходом при переробці молока. В 1 т молочної сироватки в середньому втримується 10 кг повноцінного білка й 50 кг дисахариду лактози, що легко утилізується мікроорганізмами. Для виділення з молочної сироватки білків розроблена ефективна технологія із застосуванням методу ультрафільтрації низькомолекулярних речовин через мембрани. Одержувані в такий спосіб білки використають для готування сухого знежиреного молока. рідкі відходи, що залишаються після відділення білків, що містять лактозу, можуть бути перероблені шляхом культивування дріжджів у збагачені білками кормові продукти.

Дуже часто дріжджуванню піддають молочну сироватку без попереднього виділення з її білків, при цьому вирощують спеціальні раси кормових дріжджів з роду Torulopsis. На основі дріжджування молочної сироватки роблять три види кормових білкових продуктів: замінник незбираного молока для годівлі молодняку сільськогосподарських тварин - «БИО - ЗЦМ»; рідкий білковий продукт «Промикс» зі змістом білків в 2,5 - 3 рази вище, ніж у вихідній молочній сироватці; сухий збагачений дріжджовими білками продукт «Провилакт», застосовуваний як замінник сухого знежиреного молока.

Крім вуглеводів і вуглеводнів як джерела вуглецю дріжджові клітини можуть використати нижчі спирти - метанол й етанол, які звичайно одержують із природного газу або рослинних відходів. Дріжджова маса, отримана після культивування дріжджів на спиртах, відрізняється високим змістом білків (56 – 62 % від сухої маси) і в ній менше втримується шкідливих домішок, чим у комовых дріжджах, вирощених на н - парафінах нафти.

У порівнянні з рослинними джерелами білків кормові дріжджі мають підвищений зміст нуклеїнових кислот. Кормові дріжджі, культивіруємі на живильному із середовищі н - парафіні нафти, можуть містити багато шкідливих домішок - похідні бензолу, D - амінокислоти, аномальні ліпіди, різні токсини й канцерогенні речовини, тому їх піддають спеціальному очищенню (екстракція бензином).

При переробці в харчовий білок біомасу дріжджів ретельно очищають. Із цією метою клітинні оболонки дріжджових клітин руйнують за допомогою механічної, лужної, кислотної або ферментативної обробки й потім екстрагують гомогенну дріжджову масу органічним розчинником. Після такого очищення від органічних і мінеральних домішок отриманий дріжджовий продукт обробляють лужним розчином для розчинення білків, потім білковий розчин відокремлюють від маси, що залишилася, дріжджів і направляють на діаліз. У процесі діалізу з білкового розчину видаляють низькомолекулярні домішки. Очищені діалізом білки осаджують, висушують й отриману білкову масу використають як добавки в різні харчові продукти.


1.1.2 Білкові концентрати з бактерій

Поряд з одержанням кормових дріжджів важливе значення для кормо-виробництва мають також бактеріальні білкові концентрати зі змістом сирого білка 60 – 80 % від сухої маси. Відомо більше 30 видів бактерій, які можуть бути використані як джерела повноцінного кормового білка. Бактерії здатні нарощувати біомасу в кілька разів швидше дріжджових клітин й у білку бактерій утримується значно більше сірко-містких амінокислот, внаслідок чого він має більше високу біологічну цінність у порівнянні з білком дріжджів.

При використанні як сировина газоподібних продуктів, основним компонентом яких є метан, живильну суміш під тиском подають у спеціальний ферментер струминного типу. З метою кращої утилізації сировини мікроорганізмами в такому ферментері передбачається рециркуляція газової суміші. Для забезпечення необхідної аерації культури бактерій ферментер продувають повітрям або киснем. Найчастіше на газових живильних вирощувати середовищах бактерії роду Methylococcus, здатні при оптимальних умовах утилізувати до 85 – 90 % подаваного у ферментер метану. Всі технологічні лінії, пов'язані з культивуванням бактерій у газовому середовищі, вимагає контролю за складом цього середовища й оснащення виробничих установок герметизованим, вибухобезпечним устаткуванням.

По закінченню ферментації клітини бактерій осаджують і відокремлюють від живильного на середовища сепараторі. Отриману бактеріальну масу піддають механічній або ультразвуковій обробці з метою руйнування клітинних оболонок, після чого висушують і використають для готування кормових білкових концентратів.

У зв'язку з тим, що газове середовище з метану й повітря вибухонебезпечні й для кращої утилізації метану бактеріями вимагають її постійної циркуляції, виробництво кормового білка з газоподібних продуктів є досить складним і дорогим. Більше широке застосування знаходить технологія вирощування бактеріальної білкової маси на метанолі, що легко можна одержати шляхом окислювання метану. При культивуванні на живильному, середовищі утримуючий метанол, найбільш ефективні бактерії пологів Methylomonas, Pseudomonas, Meth ophillus. Вирощування цих бактерій проводиться у звичайному ферментері з використанням рідкого живильного середовища.

Високою інтенсивністю синтезу білків характеризується бактерії, здатні накопичувати у своїх клітинах до 80 % сирого білка розраховуючи на суху речовину.

Звичайно водень для виробництва білкової маси одержують із води шляхом її електролітичного (електроліз) або фотохімічного розкладання. Вуглекислий газ може бути використаний з газоподібних відходів яких - або промислових виробництв, а також топкових газів, що одночасно вирішує проблему очищення газового середовища. Виробництво кормового білка на основі водно-окислюючих бактерій може бути також організоване поблизу хімічних підприємств, де як побічний продукт утвориться водень.

1.1.3Кормові білки з водоростей

Для виробництва кормового білка використають одноклітинні водорості Сhlorella й Scenedesmus, а також синьо - зелені водорості з роду Spirulina, які здатні синтезувати білки й інші органічні речовини з вуглекислого газу, води й мінеральних речовин за рахунок засвоєння енергії сонячного світла.

По інтенсивності нагромадження біомаси водорості, хоча й уступають кормовим дріжджам і бактеріям, але значно перевершують сільськогосподарські рослини.

Зміст білків у клітинах хлорелли й сценедесмус становить 45 – 55 % розраховуючи на суху масу, а в клітинах спірулини досягає 60 – 65 %. Білки водоростей добре збалансовані по змісту незамінних амінокислот, недостатньо втримується лише метіоніну. Поряд з високим змістом білкових речовин у клітинах водоростей досить багато синтезується полі ненасичених жирних кислот і провітаміну А - каротину.

Технологія одержання білкової маси із клітин водоростей включає вирощування промислової культури в культиваторах відкритого або закритого типу, відділення водоростей від маси води, готування товарного продукту у вигляді суспензій, сухого порошку або пасто-образної маси. Процес відділення клітин водоростей від маси води енергоємний.

Спочатку відстоюють клітинну суспензію, потім клітини водоростей відокремлюють від води. Для прискорення осадження клітин часто застосовують метод хімічної флоккуляції. Зухвалу швидку коагуляцію часток. Після осадження клітинної біомаси її пропускають через сепаратор, у результаті суспензія згущається до необхідної концентрації.

Важливе значення має вирощування водоростей на стоках промислових підприємств. При культивуванні водоростей на промислових стоках або стоках теплових станцій використають надлишок тепла, що відводить із цих об'єктів, а також утилізується вуглекислота.

1.1.4 Білки мікроскопічних грибів

Коштовним джерелом добре збалансованих по амінокислотному складі білків є клітини міцелію багатьох мікроскопічних грибів. По своїх живильних властивостях білки грибів наближаються до білок сої й м'яса, внаслідок чого можуть використати не тільки для готування білкових концентратів, але і як добавка в їжу. Сировиною для промислового вирощування мікроскопічних грибів звичайно служать рослинні відходи, що містять клітковину, гемицеллюлози, лігнін.

У цей час у процесі дослідження відібрані токсичні швидкозростаючі штами мезо- і термофільних грибів для промислового культивування. У порівнянні із дріжджовими білки мікроскопічних грибів відрізняються підвищеним змістом сірко-містких амінокислот і кращою засвоюваністю. Концентрація нуклеїнових кислот у грибному міцелії (1 – 4 % від сухої маси) майже така ж, як у тканинах рослинного організму. Разом з тим у біомасі грибів значно менше, ніж у дріжджах, синтезується білків й у них відносно повільніше відбувається ріст біомаси.

Нижчі міцеліальні гриби, культивіруемі на целлюлозо- і лігнинмістких рослинних відходах, внаслідок їхньої здатності синтезувати комплекс гідролітичних ферментів розкладають целюлозу й лігнін до простих речовин, з яких утворяться амінокислоти й білки. З метою прискорення росту грибів проводиться попередня обробка рослинної сировини, що підвищує доступність його компонентів для утилізації мікроорганізмами. Найчастіше застосовують кислотно-лужний спосіб обробки целлюлозо- і лігнин-містких відходів, відпарювання під тиском. Обробка аміаком і каустичною содою. Після такої обробки відбувається повне або часткове розкладання полісахаридів і лігніну, що забезпечує прискорений ріст грибної маси й скорочення строків промислового культивування грибів.

Залежно від способу підготовки рослинної сировини для культивування мікроскопічних грибів застосовують і відповідні технології їхнього вирощування. Для культивування грибів на твердому живильному розробленому середовищі метод твердо фазної ферментації, що включає здрібнювання й обробку рослинної сировини парами води й аміаку, збагачення цієї сировини мінеральними речовинами, посів і вирощування міцелію грибів у заданому режимі аерації й підтримки оптимальної температури. Однак при такій технології культивування грибів коефіцієнт використання рослинної сировини низький, що визначає й порівняно невисокий рівень зміст білка у вирощуваній грибній масі (20 – 30 % від сухої маси).

Більше високий коефіцієнт використання сировини звичайно досягається при вирощуванні грибів на гідролізатах рослинних відходів і рідких відходів деревопереробної й целюлозно-паперової промисловості. Для цього застосовують метод глибинного культивування, як і при вирощуванні кормових дріжджів. Зміст білків у грибній масі. Вирощеної на рідкому живильному , середовищі може досягати 50 – 60 % від сухої маси. З метою більше повного використання сировини також практикується спільне культивування грибів і бактерій. Поряд з використанням рослинних відходів розроблені також технології по переробці в грибний білок торфу, гною, екскрементів тварин.

1.1.5 Кормові білкові концентрати з рослин

По змісту всіх амінокислот білки трав не уступають або значно перевищують еталон ФАО, і тільки лише дефіцит відзначається по кількості метіоніну.

Досвіди показують, що із всіх трав'янистих рослин найбільш високу біологічну цінність білків мають бобові кормові трави, трохи нижче в мятлікових трав.

Сприятливий амінокислотний склад білків, інтенсивний їхній синтез у вегетативних органах рослин послужили основою розробки технології витягу з рослинної маси білків для кормових і харчових цілей.

Однак пізніше було з'ясовано, що в рослинному соку втримується багато шкідливих домішок, таких, як феноли, важкі метали, інгібітору трипсину, гемолізуючі речовини, нуклеїнові кислоти й т.д. Більше таких речовин - у ядрі, хлоропластах, мітохондріях і менше - у цитоплазмі. Виходячи із цього, для використання на кормові й харчові цілі найбільш придатними є цитоплазматичні білки.

Невеликі напівпромислові установки для одержання кормових білкових концентратів з вегетативної маси рослин можуть бути використані в будь-якому господарстві, що має високобілкову рослинну сировину й кормоцех. Технологія готування білкових концентратів включає здрібнювання рослинної маси, отжиму соку, його коагуляцію, поділ коагуляту на зелену творого-образну масу й коричневий сік, консервування білково-вітамінної пасти.

Таким чином, у результаті переробки рослинної маси можуть бути отримані три види кормів: білковий коагулят, з якого одержують білково-вітамінну пасту; ферментований сік; залишки рослинного матеріалу після отжиму соку у вигляді гніта. (14).

Відомий спосіб одержання білка за допомогою аеробного культивування при температурі 45 – 65 °С у водному середовищу, що містить джерела вуглецю, азоту й мінеральних речовин. Недоліком відомого способу є невисокий вихід протеїну. Поставлена мета досягається тим, що як вихідна культура мікроорганізму для одержання протеїну використають термофільну змішану культуру.Термофільна змішана культура бактерій складається із трьох окремих видів бактерій. Ці бактерії класифікуються як великі вигнуті палички, підтип бактерій, клас Schizomycetes, загін Enbacteriales, сімейство Bacillaceae рід Bacillus; великі грамотрицательные палички, підтип бактерій, клас Schizomycetes, загін Enbacteriales,сімейство Bacillaceae, рід Bacillus; дрібні грамотрицательные палички, підтип бактерії, клас Schszomycetes. Змішана термофільна культура проявляє коштовні властивості. Ця змішана культура (Мс) росте краще при високих температурах, чим при звичайних, з більшим виходом клітин і зменшеною тенденцією до піно утворення в умовах ферментації.

Ця змішана культура є термофільної, росте ефективно з високою продуктивністю на сировину з окислених вуглеводнів, зокрема, нижчих спиртів, найбільше переважно з метанолу або еталона, при низьких температурах, при яких більшість інших відомих видів бактерій або відносно непродуктивні, або просто не можуть існувати, або непродуктивні й не толерантні до сировини з окислених вуглеводнів.

Ріст мікроорганізмів здійснюється у водному живильному, середовищі утримуючий водяний розчин мінеральної солі, джерело вуглецю й енергії, молекулярний кисень і вихідний посівний матеріал змішаної культури Мс. Мс є високопродуктивною при порівняно високих температурах ферментації й продуцирує необхідні й коштовні одноклітинні протеїнові продукти з високим змістом протеїну у вигляді амінокислот необхідного типу й у необхідному співвідношенні.

Вирощування Мс змішаних бактерій із сировини з окислених вуглеводнів може бути успішно здійснене при 45 – 65 °С, переважно, для досягнення оптимальної швидкості росту, 50 – 60 °С. Більше низькі температури придушують ріст бактерій.

При використанні змішаної культури досягається великий вихід клітин, що визначається в грамах отриманих клітин на 100 м використаного джерела вуглецю й енергії, наприклад метанолу.

Задовільний контроль може бути досягнуть також шляхом перевірки змісту живильного матеріалу у вихідному з ферментаторів потоці, воно повинне становити 0 - 0,2 вага. %.

Джерелом азоту може бути будь-яке азот містке з'єднання, здатне виділяти азот у вигляді, зручному для обмінного поглинання мікроорганізмами. Хоча можуть застосовувати різні органічні джерела азоту, наприклад інші протеїни, сечовина або т.п., але звичайно неорганічні джерела азоту більше економічні й зручні для практичного застосування. Як приклад таких неорганічних азот містке з'єднань можна привести аміак або гідроксид амонію, а також різні солі амонію, наприклад карбонат амонію, цитрит амонію, фосфат амонію, сульфат амонію й пірофосфат амонію. Зручно застосовувати газоподібний амоній, якому можна барботировати у відповідних кількостях через водне ферментаційне середовище. рН водної мікробної ферментаційної суміші 5,5 - 7,5 переважно 6 - 7.

Крім джерел кисню, азоту й вуглецю й енергії, необхідно до живильного додавати середовища обрані мінеральні живильні речовини в необхідних кількостях і співвідношеннях, щоб забезпечити правильний ріст мікроорганізмів і максимальне засвоєння окисленого вуглеводню клітинами в процесі мікробної конверсії. Джерелом вуглецю й енергії є окислений вуглеводень. Окислені вуглеводні включають спирти, кетони, складні й прості ефіри, кислоти й альдегіди, які в основному є водорозчинними й переважно містять до 10 атомів вуглецю в молекулі.

Найбільш кращими спиртами є спирти, що містять С1 – С4 у молекулі, особливо одноатомні спирти, внаслідок їхньої доступності, економічності. Особливо кращий метанол, тому що відносно дешево, легко доступний і розчинний у воді. (15).

1.2 Особливості культивування біообъєктів

При періодичному культивуванні доцільно створити штучно такий сталий стан, при якому концентрація клітин, питома швидкість росту й навколишньої клітини середовище не змінювалися б у часі. Такі умови можливі при безперервному культивуванні, коли клітини продуцента розмножуються зі швидкістю, що залежить від припливу живильних речовин і деяких інших умов. Безперервний спосіб особливо вигідний, коли джерелом вуглецю й енергії є нижчий спирт, наприклад метанол або етанол, витрата якого може бути легко автоматизований. Частина обсягу культуральної рідини постійного випливає з тією же швидкістю, з який подається середовище в апарат. Метод проточного культивування може бути організований як процес повного витиснення і як процес повного змішання. Здійснення першого можливо для культивування анаеробних мікроорганізмів у ферментаторі, що представляє собою трубу, у яку з одного кінця безупинно подають живильне й з посівний матеріал, а з іншого кінця відбирають культуральну рідина. Процес відбувається без перемішування й аерації. Коли середовище й посівний матеріал попадають у ферментатор, популяція перебуває в лаг - фазі, а на виході з ферментатора культура може перебувати в будь-якій фазі залежно від швидкості подачі середовища. У ферментаторі відтворюється повна крива розмноження, але не в часі, а в просторі.

У процесі повного змішання розмноження культури відбувається у ферментаторі при інтенсивному перемішуванні й аерації. У повному обсязі культуральної рідини умови повинні бути однаковими. При цьому у ферментаторі можуть бути створені умови, що відповідають будь-якій крапці кривої розмноження культури, вирощуваної періодичним способом. Процес повного змішання може бути організований по типі системи "турбидостат" й "хемостат".

У системі "турбидостат" у ферментаторі підтримують щільність популяції постійної, і при швидкій протоці середовища створюються умови, близькі до тих, які відповідають логарифмічній фазі, при повільному - наближаються до умов, що відповідають стаціонарній фазі. У сталому режимі роботи ферментатора питома швидкість протоки середовища дорівнює питомої швидкості розмноження культури. Підвищення швидкості протоки або вплив, що сповільнює ріст, приводить до того, що швидкість розмноження виявляється менше швидкості протоки й клітини культури будуть вимиті з ферментатора.

У системі "хемостат" величину клітинної популяції контролюють за допомогою окремих компонентів живильного . середовища Середовище становлять так, щоб один з компонентів, необхідний для росту біомаси клітин, був у недоліку або лімітував ріст, підтримуючи тим самим культуру в потрібному стані. Використовуючи батарею ферментаторів, можна в кожному апарату постійно підтримувати продуцент у певній фазі розмноження.

У цей час безперервне культивування застосовують для одержання білково-вітамінних концентратів (БВК), кормових дріжджів, лимонної кислоти, лізину.

У виробництві антибіотиків, поряд з періодичним культивуванням, всі частіше починають використати методи, що займають проміжне положення між переодичним і безперервним культивуванням, тобто напівбезперервний від’ємна-доливной метод. Таким способом вдається в 2 - 3 рази збільшити час перебування продуцента в активній фазі. Недолік полягає в тому, що доливи здійснюють живильним повним середовищем складу. Цього недоліку позбавлений метод напівбезперервної регульованої ферментації. Суть цього методу полягає в тому, що в певний час, починаючи з логарифмічної фази розмноження в культуральну рідину додають окремі компоненти живильного , середовища підтримуючи їхню концентрацію на постійному сприятливому рівні - спочатку для росту біомаси клітин, а потім - для синтезу цільового продукту.

Періодично з ферментатора відбирають певні об’єми культуральної рідини із всі зростаючою концентрацією цільового продукту. Ферментацію припиняють після того як активність продукту досягла максимуму. Цим способом вдається не тільки продовжити активну фазу, у якій перебуває продуцент, але й підвищити ступінь використання їм субстрату, а в остаточному підсумку - продуктивність процесу, тобто збільшити вихід кінцевого продукту розраховуючи на спожитий субстрат.

Із усього розмаїтості способів проведення процесів біотехнології найбільш складними є регульовані ферментації з дотриманням умов асептики. Крім того для проведення процесу в асептичних умовах необхідне введення додаткових стадій, що забезпечують стерилізацію живильних і з подаваного у ферментатори повітря.

Стерильне живильне в з інокуляторі - посівному апарату першого щабля засівають із дотриманням правил асептики через спеціальний пристрій посівним матеріалом, що попередньо був вирощений у колбі.

Створюються й підтримуються необхідні режими в апарату для розмноження клітин продуцента (температуру, аерацію й перемішування), а потім контролюють й оцінюють розвиток культури. При досягненні необхідних стадій розвитку й кількості біомаси посівний матеріал передавлюють стерильним стисненим повітрям по посівному колекторі в посівний апарат більшої місткості. На цьому другому щаблі вирощування посівного матеріалу прагнуть одержати більше біомаси клітин, щоб у ферментаторі можна було створити необхідну для даного штаму продуцента вихідну щільність популяції. Якщо ця вимога здійсненна без другого щабля, то ферментаційне середовище засівають безпосередньо з інокулятора.

Біосинтез цільового продукту у ферментаторі відбувається при заданих температурному режимі, аерації, перемішуванні й рН культуральної рідини; величину рН звичайно регулюють періодичною подачею аміачної води через барботер ферментатора. У випадку піно утворювання подають стерильний піногасник зі спеціального апарата по сигналі датчика рівня піни.

Для підтримки сталості концентрацій окремих компонентів живильного їх середовища подають у вигляді стерильних розчинів по команді ЕОМ з відомою швидкістю й періодичністю у ферментатор зі спеціальних апаратів.

У випадку проведення ферментації свідомо в нестерильних умовах живильне й з повітря для аерації не стерилізують, але посівний матеріал завжди вирощують на стерильних живильних у з асептичних умовах.(20).

1.3 Обладнання для культивування

1.3.1 Ферментатори для глибинного культивування мікроорганізмів на рідких живильних середовищах

Глибинне культивування мікроорганізмів - продуцентів біологічно активних речовин - є найбільш складним і тонким процесом одержання продуктів мікробного синтезу. Біосинтез продуцируемих мікроорганізмом біологічно активних речовин залежить від таких факторів, як температура, рН середовища й зростаючої культури, концентрація розчиненого кисню, тривалість культививування, конструкція й матеріал устаткування, у якому відбувається процес, і ін.

Залежно від застосовуваних методів оцінки роботи ферментатори для глибинного вирощування мікроорганізмів підрозділяють на ряд груп по наступних ознаках:

- по способі культивування - на апарати безперервної й періодичної дії;

- по стерильності - на герметичні й не потребуючої строгої герметичності;

- по конструктивних ознаках - на ферментатори з дифузором і турбіною, з обертаючими аераторами, з механічними мішалками, із зовнішнім циркуляційним контуром, колонні ферментатори, з ежекційною системою аерації;

- по способі уведення енергії й організації перемішування й аерації - на апарати з підведенням енергії до газової фази, до рідкої фази й комбінованої.

У мікробіологічній промисловості практично всі процеси культивування продуцентів біологічно активних речовин, за винятком дріжджів для одержання БВК на парафинах, гідролізатах і сульфітних лугах, проводяться періодичним способом у стерильних умовах.

1.3.2 Ферментатори для стерильного культивування мікроорганізмів

Ферментатори з механічним перемішуванням барботажного типу.Даний тип ферментатора широко застосовується для стерильних процесів вирощування мікроорганізмів - продуцентів біологічно активних речовин.

Ферментатори конструкції Гипромедпрома. Це циліндричний апарат вертикального типу з верхнім приводом пристрою, що перемішує. Геометричний обсяг ферментатора коливається в межах 1 – 50 м3. апарати обсягом 50 м3 обладнані пристроєм, що дозволяє змінювати частоту обертання приводу пристрою, що перемішує, від 60 до 140 хв-1.

З метою відводу фізіологічного тепла ферментатор постачений багатоярусною сорочкою, що має площа поверхні охолодження 55 м2, і змійовиками, розташованими всередині нього, із площею поверхні 39 м2. ферментатор, теплообмінні сорочки й змійовики розраховані на робочий тиск 0,29 МПа й температуру стерилізації 140°С.

На валу діаметром 160 мм і довжиною 7000 мм змонтовані два комплекти мішалок, що складаються з відкритих і закритих турбін. Ущільнення вала торцеве, окружна швидкість на кінці мішалки 6,5 м/с. Ферментатор обладнаний барботером розбірної конструкції, що має 2000 конічних отворів діаметром 3 мм, звужуючих донизу. Діаметр апарата 3000 мм, висота без електродвигуна 6800 мм.

Ферментатор фірми «Нордон». Конструкція цього ферментатора відрізняється від вищенаведених тем, що нижньої частини вала розташоване пристрій, що перемішує, із шести регульованих лопат прямокутного розтину, а на верхньої – піно гасячи механічний пристрій із двох лопат прямокутного розтину з ребрами жорсткості, спрямованими убік обертання.

Ферментатори із пневматичним перемішуванням середовища.

До цього типу ставляться апарати, усередині яких змонтовані форсунки, дифузори, барботери для подачі повітря. Вступник повітря використається для перемішування зростаючої культури, забезпечення потреби мікроорганізму в кисні й відводу метаболітів, що утворяться.

Ферментатор циліндричний. Конструктивно такий ферментатор зовні аналогічний ферментатору з механічним перемішуванням, але в ньому відсутні механічні пристрої, що перемішують. Недоліком цього виду ферментатора є більше низька в порівнянні з ферментаторами з механічним перемішуванням величина робочого обсягу, особливо при роботі із сильно пінливими середовищами. Вони застосовуються в тих випадках, коли культура мікроорганізму не має потреби в інтенсивному перемішуванні і її в'язкості невелика.

Також до цього типу ставляться ферментатори: ферментатор кульовий із пневматичним перемішуванням, ферментатор з форсуночним підведенням повітря, ферментатор з інтенсивним масообміном, ферментатор фірми «Хеман».

1.3.3 Ферментатори для нестерильних процесів культивування мікроорганізмів

До нестерильних процесів культивування мікроорганізмів ставляться в основному процеси вирощування продуцентів кормових дріжджів. По конструктивному виконанню ферментатори для виробництва кормо