Скачать

Архитектурно-строительная акустика

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Институт открытого дистанционного образования

КОНТРОЛЬНАЯ РАБОТА НА ТЕМУ:

"АРХИТЕКТУРНО - СТРОИТЕЛЬНАЯ АКУСТИКА"

Выполнил студент

гр. ПГС 654/2: Гутова О.Ю.

Проверил: Паузин С.А.

Выкса 2009 г.


Оглавление

1. Оптимальное время реверберации

2. Расчет времени реверберации

3. Определение времени реверберации помещения конференц-зала


1. Оптимальное время реверберации

Необходимо определить оптимальное время реверберации для конференц-зала размерами 18 × 12 × 4,2 м. Вычисляем объем зала: V = 907 м3. Определяем оптимальное время реверберации для частот 500 и 2000 Гц:

Топт = 0,29 lg 907,2 = 0,86 с.

Для частоты 125 Гц полученное значение необходимо увеличить на 20%: 0,86 с × 1,2 = 1,03 с.

Определяем допускаемые отклонения оптимального времени реверберации:

для частот 500 и 2000 Гц: 0,86 с × 1,1 = 0,95 с; 0,86 с × 0,9 = 0,77 с;

для частоты 125 Гц: 1,03 с × 1,1 = 1,13 с; 1,03 с × 0,9 = 0,93 с.

Частотная зависимость оптимального времени реверберации для конференц-зала объемом 907 м3 в графическом виде.

Частотные характеристики оптимального времени реверберации для конференц-зала объемом 907 м3



2. Расчет времени реверберации

Необходимо определить время реверберации для конференц-зала размерами 18 × 12 × 4,2 м вместимостью 180 человек и сравнить полученные значения с оптимальными. Материалы отделки поверхностей следующие:

пол - паркетный (с установленными полумягкими креслами (180 шт), площадь одного кресла с проходом 0,5 м2); стены - ГВЛ (в стенах расположены 3окна размером 2,1 × 2,1 м каждое, а также 2 двери размером 1,2 × 2,1 м каждая); потолок - подвесной, из потолочных плит Armstrong Casa.

Последовательность действий при определении времени реверберации конференц-зала следующая:

1. Определяем объем зала (V = 907 м3), площадь каждой из внутренних поверхностей помещения, а также площадь всех поверхностей за исключением площади, занятой зрительскими местами, (Sобщ = 594 м2).

2. Определяем оптимальное время реверберации на трех частотах в зависимости от вычисленного объема и назначения помещения.

3. Определяем количество зрителей и пустых кресел из условия 70% - ного заполнения зала: количество зрителей - 126 чел., количество пустых кресел - 54 шт.

4. Заносим в таблицу наименования всех поверхностей, их площади, а также общую площадь Sобщ.

5. После этого перемножаем площадь каждой из поверхностей помещения (S) на соответствующий коэффициент звукопоглощения α (для всех трех частот). Получили значения эквивалентной площади звукопоглощения каждой из поверхностей (α·S). После суммирования этих значений для всех поверхностей получаем звукопоглощение поверхностями помещения (три значения для частот 125, 500 и 2000 Гц).

6. Аналогичные действия производим с эквивалентным звукопоглощением зрителями и пустыми креслами. Перемножаем соответствующие значения на количество зрителей (126 чел) и пустых кресел (54 шт). В результате получаем звукопоглощение зрителями и креслами (три значения для частот 125, 500 и 2000 Гц).

7. Для получения значений добавочного звукопоглощения перемножаем эти коэффициенты на общую площадь поверхностей помещения. В данном случае в задании не указано, что в конференц-зале имеются условия, вызывающее значительное добавочное звукопоглощение (помещение конференц-зала простой формы, не имеет пазух и объемных осветительных приборов), поэтому добавочное звукопоглощение уменьшаем на 50% (Sобщ × 0,5 = 594 × 0,5 =297 м2).

8. Суммируем значения звукопоглощения поверхностями помещения, зрителями и креслами, а также добавочное звукопоглощение. В результате получили эквивалентное звукопоглощение Аобщ на трех частотах.

9. Определяем средний коэффициент звукопоглощения αср= Аобщ/Sобщ, а также функцию среднего коэффициента звукопоглощения φ (αср) = - ln (1-αср) для всех трех частот.

10. Вычисляем время реверберации помещения по формуле Эйринга на трех частотах.

11. Определенное расчетное время реверберации Т сравнивается с оптимальным временем реверберации Топт, учитывая его допускаемые отклонения (±10%). Результаты расчета времени реверберации и сравнения его с оптимальным временем реверберациипредставляются в виде графика.

3. Определение времени реверберации помещения конференц-зала

Наименование

поверхностей

Площадь S, м2

Значения α и α×S, м2, на частотах, Гц

1255002000
α

α·S

α

α·S

α

α·S

1Потолок - Armstrong Casa2160,2349,680,4495,040,50108
2Пол, не занятый креслами - паркет1260,045,040,078,820,067,56
3Стены (без учета оконных и дверных проемов) - ГВЛ233,730,024,670,0614,020,0511,69
4Окна (3 шт)13,230,33,970,151,980,060,79
5Двери деревянные (2 шт)5,040,030,150,050,250,040,2

Sобщ2)

594

Звукопоглощение

поверхностями помещения

63,5

120,1

128,2

6Зрители в кресле (70%)126 чел.0,2531,50,450,40,4556,7
7Пустые кресла (30%)54 шт.0,084,320,126,480,15,4

Звукопоглощение

зрителями и креслами

35,8

56,9

62,1

Добавочное звукопоглощение

(уменьшенное на 50%: 594/2 = 297 м2)

2970,09

26,7

0,05

14,9

0,04

11,9

Эквивалентное звукопоглощение Аобщ

126

191,9

202,2

αср= Аобщ/Sобщ

0,210,320,34

φ (αср) = - ln (1-αср)

0,240,390,42

, с

1,04

0,64

0,59

Оптимальное время реверберации

Топт, с

1,030,860,86

Верхняя граница допускаемых

отклонений от Топт, с

1,130,950,95

Нижняя граница допускаемых

отклонений от Топт, с

0,930,770,77