Скачать

Анализ рядов распределения

1. Характеристики центра распределения

1.1 Мода

1.2 Медиана

1.3 Показатели дифференциации

2. Характеристики вариации

2.1 Абсолютные характеристики вариации

2.1.1 Расчет дисперсии способом моментов

2.1.2 Расчет дисперсии альтернативного признака

2.1.3 Межгрупповая дисперсия. Правило сложения дисперсий

2.2 Относительные характеристики вариации

3. Теоретические кривые распределения

3.1 Нормальное распределение

3.2 Выравнивание эмпирического распределения по кривой нормального распределения

3.3 Критерии согласия

3.4 Характеристики неравномерности распределения


Введение

Ряд распределения (т.е. упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку) характеризует состав, структуру совокупности по определенному признаку. Его строят для того, чтобы выявить характер распределения единиц совокупности по варьирующему признаку, определить закономерности в этом распределении.

Для анализа ряда распределения используют ряд статистических характеристик:

частотные характеристики;

характеристики центра распределения;

характеристики вариации;

характеристики неравномерности распределения.

Частотные характеристики ряда распределения, а именно, частоты и частости (или другое название - доля ), накопленные (или кумулятивные) частоты и частости , абсолютная и относительная плотность распределения, были рассмотрены в теме "Сводка и группировка статистических данных".


1. Характеристики центра распределения

К характеристикам центра распределенияотносят среднюю, моду и медиану. Эти характеристики принято также называть структурными средними, они определяют вид полигона и гистограммы, эмпирического закона распределения.

В качестве средней для характеристики центра распределениячаще всего используют среднюю арифметическую простую или взвешенную.

1.1 Мода

Мода (Мо) - это варианта, которая чаще всего встречается в изучаемой совокупности. Мода не зависит от крайних значений вариант и может применяется для характеристики центра в рядах распределения с неопределенными границами.

В дискретном вариационном ряду мода определяется визуально и равна варианте с наибольшей частотой или частостью. Данные распределения рабочих по стажу работы (см. лекцию "Сводка и группировка статистических данных") показывают, что наибольшее рабочих имеют стаж работы 4 года, т.е. варианта, равная 4, является модой признака. Мо = 4.

В интервальных рядах распределения для нахождения моды сначала по наибольшей частоте определяют модальный интервал, т.е. интервал, содержащий моду, а затем приблизительно рассчитывают ее по формуле:

,

где - нижняя граница модального интервала;

- величина модального интервала;

- частоты соответственно в предыдущем и следующим за модальным интервалах.

Встречаются ряды, которые имеют две моды (бимодальный ряд) или несколько (полимодальный).

Рассчитаем моду интервального ряда распределения рабочих по размеру заработной платы (см. лекцию "Сводка и группировка статистических данных").

В этом вариационном ряду интервал 900-1000 грн., в который попало максимальное количество рабочих (9 чел), является модальным.

грн.

Полученное значение моды свидетельствует о том, что в рассматриваемой совокупности наиболее типичной является заработная плата 914,29 грн., что выше ранее рассчитанной средней зарплаты (870 грн).

Для ряда с неравными интервалами модальный интервал определяется по наибольшей плотности распределения, а в расчетной формуле моды вместо частот используют абсолютные плотности распределения.

Для интервальных вариационных рядов с равными интервалами моду можно приближенно определить графически.

Для этого на гистограмме этого ряда (см. гистограмму в лекции "Сводка и группировка статистических данных") выбирают самый высокий прямоугольник, который и является модальным.

Далее правую верхнюю вершину прямоугольника, предшествующего модальному (частота fMо-1), соединяют с правой верхней вершиной модального прямоугольника (частота f), а левую верхнюю вершину этого прямоугольника - с левой верхней вершиной прямоугольника, следующего за модальным (частота fMо+1).

Из точки пересечения опускают перпендикуляр на горизонтальную ось. Основание перпендикуляра покажет значение моды Мо. Точность определения зависит от масштаба графика.

1.2 Медиана

Медианой Ме называют такое значение признака, которое приходится на середину ранжированного ряда и делит его на две равные по числу единиц части. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака, превышающие медиану, другая - меньше медианы. Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.

В дискретном вариационном ряду, содержащем нечетное число единиц, медиана равна варианте признака, имеющей номер

:

,

где N - число единиц совокупности.

В дискретном ряду, состоящем из четного числа единиц совокупности, медиана определяется как средняя из вариант, имеющих номера

и : .

В распределении рабочих по стажу работы медиана равна средней из вариант, имеющих в ранжированном ряду номера 10: 2 = 5 и 10: 2 + 1 = 6. Варианты пятого и шестого признака равны 4 годам, таким образом

года

При вычислении медианы в интервальном ряду сначала находят медианный интервал, (т.е. содержащий медиану), для чего используют накопленные частоты или частости. Медианным является интервал, накопленная частота которого равна или превышает половину всего объема совокупности. Затем значение медианы рассчитывается по формуле:

,

где - нижняя граница медианного интервала; - ширина медианного интервала; - накопленная частота интервала, предшествующего медианному; - частота медианного интервала.

Рассчитаем медиану ряда распределения рабочих по размеру зарплаты (см. лекцию "Сводка и группировка статистических данных").

Медианным является интервал заработной платы 800-900 грн., поскольку его кумулятивная частота равна 17, что превышает половину суммы всех частот (). Тогда

Ме=800+100грн.

Полученное значение говорит о том, половина рабочих имеют заработную плату ниже 875 грн., но это выше среднего ее размера.

Для определения медианы можно вместо кумулятивных частот использовать кумулятивные частости .

Медиана, как и мода, не зависит от крайних значений вариант, поэтому также применяется для характеристики центра в рядах распределения с неопределенными границами.

Свойство медианы: сумма абсолютных величин отклонений вариант от медианы меньше, чем от любой другой величины (в том числе и от средней арифметической):

Это свойство медианы используется на транспорте при проектировании расположения трамвайных и троллейбусных остановок, бензоколонок, сборочных пунктов и т. д.

Пример. На шоссе длиной 100 км расположено 10 гаражей. Для проектирования строительства бензоколонки были собраны данные о числе предполагаемых ездок на заправку по каждому гаражу.

Таблица 2 - Данные о количестве ездок на заправку по каждому гаражу.

Километр шоссе, на котором расположен гараж7262837404660788692Всего ездок
Проектируемое число ездок101552052515301065200