Анализ линейной динамической цепи
В ходе выполнения курсовой работы необходимо: построить электрическую схему фильтра по указанным в таблице значениям; составить систему уравнений цепи в матричной и обычной формах; определить комплексную функцию передачи, перейти к операторной функции передачи; найти нули и полюса функции, построить карту полюсов и нулей; построить АЧХ, ЛАЧХ, ФЧХ, импульсную и переходную характеристики. В заключение курсового проекта необходимо отразить все аспекты выполнения тех или иных задач, сделать выводы в соответствии с полученными результатами и написать список литературы, которая была использована при выполнении работы.
1. Электрическая схема фильтра
Ветвь №1 | Ветвь №2 | Ветвь №3 | |||||||||
Узлы | Элементы | Узлы | Элементы | Узлы | Элементы | ||||||
Между | мГн | нФ | Между | мГн | нФ | Между | мГн | нФ | |||
1 | 0 | 1 | КоМ | 1 | 2 | 1,4142 | ------ | 1 | 2 | ----- | 0,7071 |
Ветвь №4 | |||
Узлы | Элементы | ||
Между | мГн | нФ | |
2 | 0 | 0,7071 | 1,4142 |
Рис 1. Схема фильтра.
Базисным узлом примем узел с номером 0,который является заземленным. По методу узловых напряжений получаем матрицу:
Где - вектор узловых напряжений.
Из матрицы составим систему уравнений в обычном виде:
2. Нахождение комплексной функции передачи
Для нахождения комплексной функции передачи воспользуемся методом обобщенных чисел.
Рис 2. Схема фильтра для вычисления комплексной функции передачи.
Составим проводимости узлов:
0: Y=2: Y=
1: Y= 3: Y=
Мы дополнительно ввели один узел между элементами L2 и C2.
Диагональная матрица собственных проводимостей узлов
Помножим все элементы на p и заменим ;
; ;
Получаем звездное число:
Напишем обобщенное число:
=
Далее определяем древесное число:
Определитель:
Числитель функции передачи:
Древесное число числителя:
Формула для вычисления функции передачи:
H41(p)=
Числитель:
Подставим все значения в формулу и поделим на p:
H41(p)=
Преобразуем обратно Г1 =1/L1 и Г2 =1/L2
Подставим все значения элементов в формулу H41(p),получаем:
Перейдем к нормированной частоте:
Для проверки и для того, чтобы удостовериться, что расчеты методом обобщенных чисел верны, воспользуемся результатом, полученным при использовании программы General Numbers.vi
где .
Как мы видим, функция передачи, полученная методом обобщенных чисел, полностью совпадает с функцией передачи, рассчитанной с помощью программы General Numbers.vi.
3. Карта полюсов и нулей
По ранее найденной комплексной функции передачи цепи определим полюса и нули:
Для нахождения нулей выпишем отдельно числитель функции и приравняем его к нулю. Корни данного уравнения и будут являться нулями.
=0
Решая данное уравнение, получим:
p1,2,3,4=
Для нахождения полюсов выпишем отдельно знаменатель функции и приравняем его к нулю. Корни данного полинома и будут являться полюсами.
Решив данное уравнение, мы получили полюса:
p1,2=-0.47751.3610j
p3,4=-0.22960.6542j
Рис 3. Карта полюсов и нулей.
По полученным значениям построим карту полюсов и нулей:
По виду карты полюсов и нулей можно определить некоторые особенности цепи:
1. Цепь является минимально-фазовой, т.к. в правой полуплоскости отсутствуют нули.
2. Цепь является устойчивой, т.к. в правой полуплоскости нет полюсов.
4. Нахождение функций АЧХ, ФЧХ и ЛАЧХ. Графики функций.
Рис 4. Амплитудно-частотная характеристика.
Графики АЧХ, ФЧХ и ЛАЧХ построим с помощью программ MultiSim 10 и Micro Cap 9. Амплитудно-частотная характеристика (АЧХ) определяется как:
=
Рис 5. Фазо-частотная характеристика.
Фазо-частотная характеристика (ФЧХ) определяется как:
По ФЧХ определяем время задержки сигнала:
мкс.
Логарифмическая АЧХ определяется как: 20*log(H(w))
Рис 6. Логарифмическая АЧХ.
По графику определяем крутизну среза Sсреза=70 дБ/дек, что соответствует Sсреза =21 дБ/окт.
5. Импульсная и переходная характеристики. Графики характеристик
5.1 Импульсная характеристика цепи
Импульсную характеристику посчитаем по формуле:
где H1(p) – числитель функции передачи;
H2(p) – знаменатель функции передачи;
e – основание натурального логарифма;
k – порядковый номер полюса.
Полюса функции передачи:
p1=
p2=
p3=
p4=
H1=p4 + 2p2 + 1
H2=p4 + 2.8284p3 + 5.999p2 + 2.8284p + 2
g(t)=
Рис 7. График импульсной характеристики цепи.
5.2 Переходная характеристика цепи.
Связь между импульсной и переходной характеристиками:
Получаем график:
Рис 8. График переходной характеристики цепи.
Для наглядности и сравнения приведем оба графика в одной системе координат:
Рис 9. Графики переходной и импульсной характеристик цепи.
Заключение
В ходе работы были проведены все необходимые вычисления и по полученным результатам можно сделать выводы:
1. Данный фильтр является полосно-задерживающим или режекторным. Об этом наглядно свидетельствует график АЧХ.
2. Цепь является устойчивой, т.к. в правой полуплоскости нет полюсов. Действительные части полюсов отрицательные, следовательно, все процессы затухают.
3. Цепь является минимально-фазовой, т.к. нули в правой полуплоскости отсутствуют.
4. Все свободные процессы в цепи затухают – это видно из графика переходной характеристики.
5. Крутизна среза S=70 дБ/дек, время задержки сигнала
У таких фильтров, чем резче разграничиваются друг от друга полосы непропускания, тем больше фильтрующее действие фильтра, тем больше его избирательность, тем лучше частотная характеристика фильтра – кривая зависимости тока через фильтр или его затухания от частоты. В случае идеального режекторного фильтра частотная характеристика имела бы вид прямоугольника.
Литература
1. Коровин, В.М. Анализ линейных цепей с применением микрокалькуляторов: учебное пособие к курсовой работе. /В.М. Коровин – Челябинск: ЧПИ, 1988.
2. Стандарт предприятия. Курсовое и дипломное проектирование. Общие требования к оформлению. СТП ЮУрГУ 04-2001/Составители: Сырейщикова Н.В., Гузеев В.И., Сурков И.В., Винокурова Л.В., - Челябинск: ЮУрГУ, 2001.
3. Матханов, П.Н. Основы анализа электрических цепей: линейные цепи./П.Н. Матханов. – М: «Высшая школа», 1981.
4. Коровин, В.М. Схемотехническое проектирование. Теоретические основы: учебное пособие. Ч.2. / В.М. Коровин. – Челябинск: ЧГТУ, 1993.
5. Попов, В.П. Основы теории цепей./В.П. Попов. – Москва: «Высшая школа», 2003.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Анализ линейных электрических цепей при гармоническом воздействии
ФГОУ ВПО Воронежский институт ФСИН РоссииКафедра основ радиотехники и электроникиКурсовая работапо дисциплине «Основы теории цепей»Т
- Анализ мешающих влияний в каналах связи при передаче и преобразовании информации
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИкафедра РЭСреферат на тему:«Анализ мешающих влияний в каналах
- Анализ передачи периодических сигналов через линейные электрические цепи
Нижегородский Государственный Технический УниверситетИнститут Радиоэлектроники и Информационных ТехнологийКафедра “Электроника и
- Анализ периодических и непериодических сигналов
Контрольная работа №1Спектральный анализ периодического и непериодического управляющих сигналовДано:Шифр сигнала ─ 4 из табл. 1(1);;Дл
- Анализ построения роботизированных технологических комплексов
Анализ построения роботизированных технологических комплексовНакопительные и питательные устройстваНакопительные и питательные уст
- Анализ прохождения периодического сигнала через LC-фильтр с потерями
Произошедшая научно-техническая революция затронула все виды деятельности человека даже такие как медицина, наука, сельское хозяйство,
- Анализ процессов в электрических цепях с ключевыми элементами на основе компьютерных технологий
Описание схемыДана схема рис.5-16(16 1 2 40):Даные элементов схемы:VD1 и VD2 -- диодыRн – сопротивление нагрузкиLдр – индуктивность дросселяСф – е