АЦП на микросхеме К572ПВ2
АЦП на микросхеме К572ПВ2.
Микросхема К572ПВ2 (2 стр.229) представляет собой АЦП двойного интегрирования с автоматической коррекцией нуля. Сначала рассмотрим принцип работы данного класса АЦП.
Структурная схема АЦП приведена на рис.1 (методичка стр.22 рис.13), (3 стр.464 рис.24.30).
Принцип работы АЦП поясняется с помощью диаграммы на рис.2. Работа начинается с замыкания ключа S1 соответствующим сигналом схемы управления (методичка стр.21). При наличии на входе напряжения, отличного от 0 начинается заряд конденсатора С1 интегратора. (Для определенности считаем, что входное напряжение есть и отрицательно. Входной усилитель в данной схеме играет роль повторителя напряжения. Он необходим для исключения влияния АЦП на измеряемую цепь и в процессе АЦ преобразования самостоятельной роли не играет) Обозначив время 1го такта работа АЦП , можно получить напряжение на выходе интегратора в конце этого такта (методичка стр.21). (По моему, здесь в методичке опечатка. Должно быть так.)
Рис.2
Нужно заметить, что в процессе работы выход ОУ интегратора “ведет” себя так, что бы напряжение на инверсном входе было нулевым. Т.е. выход ОУ станет положительным в самом начале процесса интегрирования. При этом компаратор сразу выдаст на счетчик разрешающий сигнал. Однако, счет не начнется, поскольку импульсы со схемы управления в этом такте еще не поступают.
2й такт начинается тем, что отключается ключ S1 и включается ключ S2. При этом интегратор соединяется с источником опорного напряжения , которое обратно измеряемому по знаку. (Т.е. в нашем случае оно должно быть положительным.) Одновременно со схемы управления на счетчик подаются тактовые импульсы, и начинается счет, разрешение которого было еще в 1м такте. Как было сказано выше, напряжение на инверсном входе ОУ интегратора близко к 0. Поэтому теперь конденсатор С1 интегратора будет разряжаться постоянным током (входной ток ОУ обычно пренебрежимо мал). Тогда время разрядки до нулевого уровня составит:
За это время счетчик отсчитает тактовых импульсов, поступающих со схемы управления с частотой . Это число можно определить по формуле (методичка стр.21):
Очевидно, что оно прямо пропорционально входному напряжению (в нашем случае – с обратным знаком) и не зависит от параметров интегратора.
После разрядки интегратора до 0, компаратор снимает сигнал разрешения, и счет прекращается, хотя импульсы со схемы управления продолжают приходить в течении всего такта. В конце такта происходит запись выходного кода со счетчика в выходной регистр. Применительно к микросхеме К572ПВ2 нужно заметить, что на выходе этого регистра имеется дешифратор, который позволяет непосредственно к данной микросхеме подключить 7 сегментные индикаторы типа АЛС324Б и АЛС 324В (5 стр.165) для визуального считывания информации.
В 3м такте происходит заряд конденсатора интегратора для коррекции нулевого уровня. Это необходимо потому, что все аналоговые устройства имеют смещение нуля. (Т.е. в нашем случае сравнивают входной сигнал не с нулем, а с не значительным, но отличным от нуля уровнем. Для повышения точности измерений это нужно компенсировать). 3й такт начинается тем, что отключается ключ S2 и включаются ключи S4 и S5. При этом вход интегратора зануляется. Сигнал с компаратора через цепочку R2, С2 подается непосредственно на конденсатор интегратора С1. В этом случае на С1 накопится заряд, (при отсутствии смещения это был бы нулевой заряд) определяемый смещением нуля аналоговых схем. Он и будет корректировать смещение нуля при следующем цикле измерений, который после этого начнется.
Основные параметры микросхемы К572ПВ2 (1 стр.362 табл. 6.16), (2 стр.231..233).
Число десятичных разрядов | 3.5 |
Погрешность преобразования, ед. мл. разряда Для варианта К572ПВ2 А Для варианта К572ПВ2 Б Для варианта К572ПВ2 В | 1 2 3 |
Напряжение питания В | +5±5%, -5±5% |
Опорное напряжение UREF, В | 0.1..1 (обычно используют 0.1 или 1 В, но можно использовать и промежуточные значения) |
Диапазон входного сигнала | ±1.999· UREF |
Входное сопротивление | 20 МОм |
Странное на 1й взгляд обозначение 3.5 разряда означает, что индицируется 3 младших десятичных разряда, а в 4м разряде индицируется знак числа (если он отрицательный) и 1 (если она есть в 4м разряде). Другие цифры в 4м разряде данная микросхема индицировать не может. Отметим так же, что микросхемы К572ПВ2 выпускаются в металлокерамическом корпусе 4134.48-2 с планарным расположением 48 выводов. Существует и микросхема КР572ПВ2 в пластмассовом корпусе 2123.40-2 с вертикальным расположением 40 выводов (2 стр.229..230). Электрически они одинаковы. В данной работе везде имеется в виду микросхема К572ПВ2 с 48 выводами.
Типовое включение микросхемы К572ПВ2, рекомендованное изготовителем, приведено на рис.2 (2 стр.244 рис.4.7), (6 стр.144). Отличие рисунков, приведенных в указанных источниках состоит в том, что в (6 стр.144) не указан способ подачи опорного напряжения. В (2 стр.244 рис.4.7) и на рис.2 для формирования опорного напряжения применен стабилизатор тока на полевом транзисторе типа К103Ж1 (4 стр.188), но может быть применен транзистор и другого типа. Эта схема описана в (3 стр.62,63 рис.5.11). Работа транзистора в данной схеме основана на том, что на потенциометре 4.7к образуется падение напряжения, которое приложено к затвору и "подзапирает" транзистор. Если по какой-то причине ток возрастет, возрастет и запирающее напряжение. Транзистор запрется сильнее и ток уменьшится. Если же ток уменьшится, уменьшится и запирающее напряжение. Транзистор слегка отопрется и ток возрастет. Стабилизированный таким образом ток протекает через резистор 470 Ом. Падение напряжения на этом резисторе и является опорным напряжением, приложенным к входу 13 микросхемы К572ПВ2. Потенциометр 4.7к позволяет точно отрегулировать ток и получить на резисторе 470 Ом требуемое опорное напряжение. Номиналы и допуска резисторов и конденсаторов, отмеченных на рис.2 буквами с номерами, приведены в табл.1 (2 стр.243).
Табл.1.
| При опорном напряжении 0.1 В | При опорном напряжении 1 В |
C1 | 0.22 мкФ±5% | 0.22 мкФ±5% |
C2 | 0.47 мкФ±5% | 0.047 мкФ±5% |
C3 | 0.01 мкФ±5% | 0.01 мкФ±5% |
C4 | 1 мкФ±5% | 0.1 мкФ±5% |
C5 | 100 пФ±5% | 100 пФ±5% |
R1 | 47 к ±5% | 470 к ±5% |
R2 | 1 МОм ±20% | 1 МОм ±20% |
R3 | 100 к ±5% | 100 к ±5% |
Назначение и номера некоторых выводов приведены в табл.2 (2 стр.230).
Табл.2.
Номер вывода | Название | Назначение |
3 | -V | Питание –5В |
4 | INT | Конденсатор интегратора |
5 | BUF | Резистор интегратора |
6 | A/Z | Конденсатор автокоррекции |
7 | INL | Аналог. входы: низко (INL) и высоко (INH) потенциальные |
8 | INH | |
9 | Com | Аналоговая земля |
10 | Cref- | Опорный конденсатор |
11 | Cref+ | |
12 | Refl 0 | Опорное напряжение |
13 | Refl 1 | |
44 | BP | Цифровая земля |
21 | OSC 3 | Внешние навесные элементы встроенного тактового генератора. |
22 | OSC 2 | |
23 | OSC 1 | |
24 | +V | Питание +5В |
43 | Выход “полярность” (лог.0 при измеряемом напряжении ниже 0) | |
Остальные контакты микросхемы – цифровые выходы, соединяемые с одноименными входами соответствующих 7 сегментных индикаторов. Цоколевка и назначение их выводов пояснены ниже. |
Рекомендуется применять конденсаторы типов К71-5 или К72-9, К73-16, К73-17 (2 стр.240). Допуск на резистор и потенциометр, номиналы которых приведены на схеме, может быть ±20%, т.к. он компенсируется регулировкой. Однако, они должны иметь хорошую временную и температурную стабильность. Указанные в табл.1 номиналы R3 и С5 обеспечивают тактовую частоту внутреннего генератора 50 кГц.
Для индикации результатов измерения рекомендовано использовать 7 сегментные индикаторы типа АЛС342Б (3 мл. разряда) АЛС324В (1/2 4го разряда) (5 стр.165). Цоколевка и расположение сегментов индикаторов приведена на рис.3.
Литература
1.Аналоговые и цифровые интегральные схемы. Под ред. Якубовского С.В. М. 1985.
2.Федорков Б.Г. Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение. М 1990.
3.Титце У. Шенк К. Полупроводниковая схемотехника. М. 1982.
4.Транзисторы. Справочник. Григорьев О.П. и др. М. 1989.
5. Иванов В.И. Аксенов А.И. Юшин А.М. Полупроводниковые оптоэлектронные приборы. Справочник. М. 1988.
6. Нефедов А.В. Интегральные микросхемы и их зарубежные аналоги. Серии К565..К599. Т6 М.1999.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Базовые стандарты технологий Web
КОНТРОЛЬНАЯ РАБОТАна тему:“Базовые стандарты технологий Web”ОглавлениеВведение. 31. Основные понятия World Wide Web. 42. World Wide Web (Всемирная инфо
- Базовые схемы режимов самовозбуждения
Проведя сравнительный анализ режимов самовозбуждения автогенератора, отметив достоинства и недостатки этих режимов, необходимо акцен
- Базовый процесс обработки вызовов
Исходя из того, что мировая телекоммуникационная сеть превратилась в крупнейшую и наиболее сложную систему в мире, в 80–90‑х годах тел
- Базы данных и их использование
Министерство образования РБЛидский технический колледжУО "Гродненский государственный университет имени Янки Купалы"КОНТРОЛЬНАЯ РАБ
- Беспроводные телекоммуникационные системы
Содержание:1. Принципы построения беспроводных телекоммуникационных систем1.1 Архитектура сотовых систем связи.1.2 Обслуживание абонент
- Бестрансформаторный усилитель мощности звуковых частот
В данном курсовом проекте по дисциплине «Электронные цепи и приборы» производится расчет и выборка транзисторов для усилительного уст
- Биллинговые системы
1. Понятие и характеристика биллинговых систем2. Обзор современных биллинговых систем2.1 MS ISA Server2.2 UТМ компании NETUP2.3 STARGAZER2.4 Traffic Inspector3. Оце