Diplom po TEC
Содержание
Аннотация
Выбор основного оборудования и описание принятой компоновки станции
Принципиальная тепловая схема блока и расчет ее на заданный режим
Выбор вспомогательного оборудования тепловой схемы блока
Определение потребностей станции в технической воде, выбор циркуляционных и подпиточных насосов
Определение часового расхода топлива энергетического котла
Топливное хозяйство станции
Расчет и выбор тягодутьевого оборудования
Расчет и выбор дымовой трубы
Мероприятия по технике безопасности и противопожарной безопасности на станции
Охрана окружающей среды на ТЭС
Переоблопачивание лопатками, имеющими вильчатый хвост
Определение технико-экономических показателей станции
Литература
АННОТАЦИЯ
Настоящий дипломный проект предназначен для итоговой государственной аттестаций студентов по специальности 1005 «Теплоэнергетические установки» в Казанском энергетическом техникуме. Проект в соответствии с выданным заданием состоит из 12 разделов:
Выбор основного оборудования и описание принятой компоновки станции
Принципиальная тепловая схема блока и расчет его на заданный режим
Выбор вспомогательного оборудования тепловой схемы блока
Определение потребностей станций в технической воде, выбор циркуляционных и подпиточных насосов
Определение часового расхода топлива энергетических и водогрейных котлов
Топливное хозяйство станции
Расчет и выбор тягодутьевого оборудования
Расчет и выбор дымовой трубы
Мероприятия по технике безопасности и противопожарной технике на станции
Охрана окружающей среды на ТЭС
Переоблопачивание лопатками, имеющими вильчатый хвост
Определение технико – экономических показателей станций
Кроме пояснительной записки дипломный проект имеет 4 листа графического задания. Графическая часть состоит из следующих чертежей:
Поперечный разрез главного корпуса
Развернутая тепловая схема
Переоблопачивание лопатками, имеющими вильчатый хвост
Технико-экономические показатели Казанской ТЭЦ-3
1 ВЫБОР ОСНОВНОГО ОБОРУДОВАНИЯ И ОПИСАНИЕ ПРИНЯТОЙ КОМПОНОВКИ СТАНЦИИ
1.1Выбор основного оборудования станции
1.1.1 Выбор единичной мощности, типа и количества турбин
Единичная мощность и тип теплофикационных агрегатов на ТЭЦ, входящих в энергосистемы, выбираются более крупными с учетом характера и перспективной величины тепловой нагрузки района.
Турбины с производственным отбором пара выбираются с учетом длительного использования этого отбора в течение года. Турбины с противодавлением выбираются для покрытия базовой части производственной, паровой и отопительной нагрузок и не устанавливается первым агрегатом ТЭЦ.
Типы турбин определяются видами тепловых нагрузок ТЭЦ.
На ТЭЦ только с отопительной нагрузкой устанавливают турбины типа Т. При отопительной и производственной нагрузках на ТЭЦ могут устанавливаться турбины типа ПТ или совместно турбины указанных типов Т, ПТ, Р. Перечисленные типы турбин изготавливаются согласно ГОСТу 3618-82.
Выбор единичной мощности турбин производят, исходя из заданной электрической и тепловой нагрузок, отдавая предпочтение агрегатом большей мощности.
По заданным теплофикационным и производственным нагрузкам Казанской ТЭЦ-3 необходима установка турбины типа ПТ-80-130.
Турбина ПТ-80-130 рассчитана для работы со свежим паром с параметрами: давление свежего пара – 13 МПа, температура свежего пара – 540С.
1.1.2 Выбор типа, единичной мощности и количества котлов
На ТЭЦ без промперегрева пара с преобладающей паровой нагрузкой применяются блочные схемы и при соответствующем обосновании с поперечными связями.
Паропроизводительность и число энергетических котлов для турбоустановки ПТ-80-130, которой расширяется Казанская ТЭЦ-3 выбираются по максимальному расходу пара машинным залом с учетом расхода пара на собственные нужды в размере 3%. В случае выхода из работы одного энергетического котла оставшиеся в работе энергетические котлы должны обеспечить максимально длительный отпуск пара на производство и отпуск пара на отопление, вентиляцию и горячее водоснабжение в размере 70% от отпуска тепла на эти цели при расчетной для проектирования систем отопления температуре наружного воздуха.
1.1.2.1 Паропроизводительность энергетического котла определяется по формуле:
= .(1 + α + β) (т/ч) (1.1.2.1)
где = 386,83 т/ч – максимальный расход пара на турбину;
α = 0,03 – запас по производительности;
β = 0,02 – расход на собственные нужды блока.
= 386,83.(1 + 0,03 + 0,02) = 406,17 (т/ч)
По параметрам пара турбины и виду топлива может быть установлен котел типа Е-420-13,8-560-ГМН на начальные параметры пара = 13,8 МПа, = 560 С, эта модель предназначена для работы на газе и мазуте. Технические характеристики: компоновка П-образная, воздухоподогреватель – РВП, ширина – 18,4 м, глубина – 14,5 м, высота – 32,4 м, температура питательной воды – 230 , температура уходящих газов – 109/147 , КПД – 94/93 %.
1.1.3 Выбор водогрейных котлов
Выбор производится по величине пиковой нагрузки ТЭЦ на отопление и горячее водоснабжение:
= 65,53 (МВт)
Количество водогрейных котлов:
= (шт.)
= = 0,66 1 (шт.)
Возможна установка одного водогрейного котла КВ-ГМ-100-150.
Так как установленные на Казанской ТЭЦ-3 пиковые водогрейные котлы обеспечивают необходимую нагрузку, то дополнительный котел не устанавливается.
1.2 Описание принятой компоновки блока
В рассматриваемой компоновке представлен поперечный разрез главного корпуса. Главный корпус представляет собой единое сооружение, состоящее из машинного зала, котельного и промежуточного отделения. Каркас здания образуется железобетонными колоннами.
Машинный зал разделяют по высоте на две части: верхнюю и нижнюю. В верхней части машинного зала, на уровне 11,8 метров, находится турбоагрегат ПТ-80-130. В данной компоновке использовано поперечное размещение турбоагрегатов. В нижней части, которое называется конденсатным отделением, располагается вспомогательное оборудование: конденсатор турбины, подогреватели низкого и высокого давления, сетевые подогреватели, питательные насосы, конденсатные и циркуляционные насосы, и все основные трубопроводы. Под перекрытиями машинного зала, на уровне 28 метров, установлен мостовой кран. Ширина машинного зала 39000 мм.
В котельном отделении главного корпуса располагаются паровые котлы и их вспомогательное оборудование. Котлы установлены без разворота топки. В верхней части котельного отделения, на высоте 38,5 метров, установлен мостовой кран. Ширина котельного отделения 29480 мм.
Между машинным залом и котельным отделением размещается промежуточное отделение. В промежуточном отделении на уровне 22 метров установлен деаэратор и его бак. В нижней части промежуточного отделения располагается РУСН. Ширина промежуточного отделения 1200 мм.
Дутьевой вентилятор и дымосос располагаются вне здания около котельного отделения на нулевой отметки. Также здесь установлен регенеративный воздухоподогреватель.
Рядом с основным зданием размещаются две дымовые трубы высотой 240 м первая и 150 м вторая.
2 ПРИНЦИПИАЛЬНАЯ ТЕПЛОВАЯ СХЕМА БЛОКА И РАСЧЕТ ЕЁ НА ЗАДАННЫЙ РЕЖИМ
2.1 Описание тепловой схемы
Пар из парового котла с параметрами МПа, поступает через стопорный клапан турбины в ЦВД, который имеет 3 отбора. Из регенеративных отборов 1, 2 пар направляется в ПВД7 и ПВД6. Из отбора 3 часть пара направляется на производство внешнему тепловому потребителю, а часть пара поступает в деаэратор и в ПВД5. Затем пар, отработавший в ЦВД турбины поступает в комбинированный цилиндр среднего и низкого давления, который имеет 3 отбора в зоне ЦВД и 1 отбор в зоне ЦНД. Из отборов 4, 5, 6 ЦСД пар поступает в группу подогревателей низкого давления (ПНД4, ПНД3, ПНД2), а также из отбора 5 и 6 часть пара поступает в сетевые подогреватели ПСГ–2 и ПСГ–1, в которых он нагревает сетевую воду движущуюся через ПСГ-1 и ПСГ-2, за счет напора создаваемого сетевым насосом первого подъема. Далее сетевая вода движется через сетевой насос второго подъема в пиковый водогрейный котел.
Пар из отбора 7 ЦНД турбины поступает в ПНД1. Затем пар, совершивший работу в турбине, через выхлопные патрубки поступает в двухпоточный конденсатор, где он охлаждается и конденсируется, отдавая свою теплоту циркуляционной охлаждающей воде. Конденсатным насосом конденсат из конденсатора подается в охладитель пара из эжектора и охладитель пара концевых уплотнений турбины. Далее основной конденсат поступает в ПНД1 где он подогревается паром из 7 отбора ЦНД турбины, а конденсат греющего пара поступает в конденсатор. Затем основной конденсат проходит через сальниковый подогреватель, где подогревается за счет теплоты пара из концевых уплотнений, а греющий пар после охлаждения и конденсаций поступает в конденсатор. Пройдя сальниковый подогреватель конденсат нагревается в группе подогревателей низкого давления ПНД2, ПНД3 и ПНД4. В этих регенеративных подогревателях применяется каскадный слив дренажа греющего пара, а между ПНД2 и ПНД3 также используют принудительный слив дренажа греющего пара.
В линию основного конденсата между ПНД2 и ПНД3, а также между ПНД3 и ПНД4 вводится конденсат греющего пара из сетевых подогревателей ПСГ1 и ПСГ2.
Основной конденсат, пройдя группу подогревателей низкого давления, поступает в деаэратор, также в деаэратор поступает возвратный конденсат производственного отбора пара, конденсат греющего пара из ПВД5, а также пар отсосов от штоков клапанов. В деаэраторе осуществляется термическая деаэрация основного конденсата, который после деаэратора называется питательной водой. Питательным насосом, имеющим электропривод, питательная вода подается в группу подогревателей высокого давления. В ПВД применяется каскадный слив дренажа греющего пара. После ПВД питательная вода поступает в паровой котел.
Турбина ПТ-80-130 имеет сетевую установку состоящую из подогревателей ПСГ1, ПСГ2, сетевые насосы 1 и 2 ступени и пиковый водогрейный котел.
2.2 Расчет принципиальной тепловой схемы на заданный режим
2.2.1 Исходные данные для расчета
Вид топлива: газ-мазут;
Тип технического водоснабжения: оборотное с градирнями;
Начальные параметры пара: МПа
С
Параметры питательной воды: МПа
С
Давление пара в отборах турбины (МПа):
4,0 | 2,35 | 1,25 | 0,2 | 0,15 | 0,08 | 0,04 | 0,003 | 0,59 |
Расход пара в отборах турбины (т/ч):
26 | 32 | 10 | 28 | 10 | 7 | 4 | 18 |
Температура сырой воды: С
Температурный график теплосети: 150 С – 70 С
КПД цилиндров турбины: η = 0,83
η = 0,85
η = 0,7
Тепловая нагрузка потребителей:
по горячей воде 12 МВт
48 МВт
0 МВт
по пару 80 т/ч
Коэффициент теплофикации: α = 0,5
2.2.2 Расчет теплофикационной установки блока с турбоустановкой ПТ-80-130
2.2.2.1 Суммарная нагрузка по горячей воде:
(МВт) (2.2.2.1)
12 + 48 + 0 = 60 (МВт)
2.2.2.2 Максимальная нагрузка по горячей воде (отопительная):
/α (МВт) (2.2.2.2)
60/0,5 = 120 (МВт)
2.2.2.3 Расход сетевой воды:
= ( 3600.)/( ) (т/ч) (2.2.2.3)
где = 4,19 кДж/кг – теплоемкость воды.
= (3600.120)/4,19.(150 - 70) = 1288,78 (т/ч)
2.2.2.4 Утечка воды в тепловых сетях: принимается в размере 0,5 %
от , т.е.
= 0,005. (т/ч) (2.2.2.4)
= 0,005.1288,78 = 6,44 (т/ч)
2.2.2.5 Расход воды на горячее водоснабжение:
= 3,6./10..( ) (т/ч) (2.2.2.5)
где принимается на 5 С ниже чем :
= 65 С
= 3,6.12/10.4,19.(65 - 5) = 171,84 (т/ч)
2.2.2.6 Расход подпиточной воды:
= + (т/ч) (2.2.2.6)
= 171,84 + 6,44 = 178,28 (т/ч)
2.2.2.7 Температура подпиточной воды: определяется по давлению
пара в вакуумном деаэраторе = 40 С
2.2.2.8 Теплота с утечкой:
= 10... ( )/3,6 (МВт) (2.2.2.7)
где = ( )/2 (С) (2.2.2.8)
= (150 + 70)/2 = 110 (С)
= 10.6,44.4,19(110 – 5)/3,6 = 0,79 (МВт)
2.2.2.9 Тепло вносимое с подпиточной водой:
= 10... ( )/3,6 (МВт) (2.2.2.9)
= 10.178,28.4,19(40 – 5)/3,6 = 7,26 (МВт)
2.2.2.10 Тепловая нагрузка сетевой подогревательной установки:
(МВт) (2.2.2.10)
120 + 0,79 – 7,26 = 113,53 (МВт)
2.2.2.11 Теплофикационная нагрузка пиковых водогрейных котлов:
(МВт) (2.2.2.11)
113,53 – 0 – 48 = 65,53 (МВт)
2.2.2.12 Расход пара на основные сетевые подогреватели:
Расход пара на верхний сетевой подогреватель
= 0 (т/ч) (2.2.2.12)
Расход на нижний сетевой подогреватель
= 3600()/().η (т/ч) (2.2.2.13)
= 3600(48 + 12)/(2666 – 391,72) .0,98 = 96,91 (т/ч)
2.2.2.13 Расход пара на деаэратор подпитки теплосети:
= .. ()/(.).η (т/ч) (2.2.2.14)
где = 28 С – температура химочищенной воды;
η = 0,98 – к.п.д. теплосети.
= 178,28.4,19(40 – 28)/(2636,8 – 4,19.28).0,98 = 3,63 (т/ч)
2.2.2.14 Расход химочищенной воды на подпитку теплосети:
= - (т/ч) (2.2.2.15)
= 178,28 – 3,63 = 174,65 (т/ч)
2.2.3 Определение параметров пара и воды в регенеративных установках принципиальной тепловой схемы
2.2.3.1 Нарисовать регенеративную часть высокого давления (рис2.2).
2.2.3.2 Температура насыщения пара в отборах (определяется по термодинамическим таблицам воды и водяного пара по давлению пара в отборах):
= 4 МПа = 250,33 С
= 2,35 МПа = 220,67 С
= 1,25 МПа = 189,81 С
2.2.3.3 Температура питательной воды:
за ПВД1 = - θ = 250,33 – 4 = 246,33 С (2.2.3.1)
за ПВД2 = - θ = 220,67 – 4 = 216,67 С (2.2.3.2)
за ПВД3 = - θ = 189,81 – 4 = 185,81 С (2.2.3.3)
где θ (С) – величина недогрева до температуры насыщения греющего пара. Для группы подогревателей высокого давления θ = 3 – 5 С
2.2.3.4 Нарисовать регенеративную часть низкого давления (рис.2.3).
2.2.3.5 Температура насыщения пара в отборах (определяется по термодинамическим таблицам воды и водяного пара по давлению в отборах):
= 0,2 МПа = 120,23 С
= 0,15 МПа = 111,37 С
= 0,08 МПа = 93,51 С
= 0,04 МПа = 75,89 С
2.2.3.6 Температура конденсата:
за ПНД4 = - θ = 120,23 – 7 = 113,23 С (2.2.3.4)
за ПНД5 = - θ = 111,37 – 7 = 104,37 С (2.2.3.5)
за ПНД6 = - θ = 93,51 – 7 = 86,51 С (2.2.3.6)
за ПНД7 = - θ = 75,89 – 7 = 68,89 С (2.2.3.7)
где θ (С) - величина недогрева до температуры насыщения греющего пара. Для группы подогревателей низкого давления θ = 5 – 10 С.
2.2.4 Построение процесса расширения пара в турбине
2.2.4.1 Относительный электрический КПД - η (определяется по заданию в зависимости от типа турбины):
η = η.η.η (%) (2.2.4.1)
η = 0,83.0,85.0,7 = 0,49 (%)
2.2.4.2 Относительный внутренний КПД - η:
η= η/ η.η (%) (2.2.4.2)
η= 0,49/0,98.0,99 = 0,51 (%)
2.2.4.3 Построить процесс расширения пара в турбине по i,диаграмме,(рис2.4).
= 13 (МПа)
= 540 (С)
= 3455 (кДж/кг)
= 0,9. (МПа) (2.2.4.3)
= 0,9.13 =11,7 (МПа)
= 3130 (кДж/кг)
(кДж/кг) (2.2.4.4)
= 3455 – (3455 – 3130) .0,83 = 3185,25 (кДж/кг)
= 3045 (кДж/кг)
(кДж/кг) (2.2.4.5)
= 3185,25 – (3185,25 – 3045).0,83 = 3068,84 (кДж/кг)
= 2915 (кДж/кг)
(кДж/кг) (2.2.4.6)
= 3068,84 – (3068,84 – 2915).0,83 = 2941,15 (кДж/кг)
= 0,9. (МПа) (2.2.4.7)
=0,9.1,25 = 1,125 (МПа)
= 2610 (кДж/кг)
(кДж/кг) (2.2.4.8)
= 2941,15 – (2941,15 – 2610).0,85 = 2659,67 (кДж/кг)
= 2609 (кДж/кг)
(кДж/кг) (2.2.4.9)
= 2659,67 – (2659,67 – 2609).0,85 = 2616,6 (кДж/кг)
= 2520 (кДж/кг)
(кДж/кг) (2.2.4.10)
= 2616,6 – (2616,6 – 2520).0,85 = 2534,49 (кДж/кг)
= 2435 (кДж/кг)
(кДж/кг) (2.2.4.11)
= 2534,49 – (2534,49 – 2435).0,7 = 2464,85 (кДж/кг)
= 2130 (кДж/кг)
(кДж/кг) (2.2.4.12)
= 2464,85 – (2464,85 – 2130).0,7 = 2230,46 (кДж/кг)
2.2.4.4 Определить располагаемый теплоперепад:
= - (кДж/кг) (2.2.4.13)
= 3455 – 2915 = 540 (кДж/кг)
= - (кДж/кг) (2.2.4.14)
= 2915 – 2520 = 395 (кДж/кг)
= - (кДж/кг) (2.2.4.15)
= 2520 – 2130 = 390 (кДж/кг)
2.2.4.5 Определить полезноиспользуемый теплоперепад:
= - (кДж/кг) (2.2.4.16)
= 3455 – 2941,15 = 513,85 (кДж/кг)
= - (кДж/кг) (2.2.4.17)
= 2941,15 – 2534,49 = 406,6 (кДж/кг)
= - (кДж/кг) (2.2.4.18)
= 2534,49 – 2230,46 = 304,03 (кДж/кг)
2.2.4.6 Определить полный полезноиспользуемый теплоперепад:
= + + (кДж/кг) (2.2.4.19)
= 513,85 + 406,66 + 304,03 = 1224,54 (кДж/кг)
2.2.5 Материальный тепловой баланс пара и питательной воды
2.2.5.1 Материальный тепловой баланс по пару:
α = 1 + α + α + α (2.2.5.1)
α = 1 + 0,01 + 0,01 + 0,004 = 1,024
2.2.5.2 Материальный баланс по питательной воде:
α = α + α (2.2.5.2)
где α = 0,01
α = 1,024 + 0,01 = 1,034
2.2.6 Сводная таблица параметров пара и воды
Размерность | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Д | К | |
МПа | 4,0 | 2,35 | 1,25 | 0,2 | 0,15 | 0,08 | 0,04 | 0,59 | 0,003 | |
кДж/кг | 3185,3 | 3068,8 | 2941,2 | 2659,7 | 2616,6 | 2534,5 | 2464,9 | 2755,5 | 2230,5 | |
С | 250,33 | 220,67 | 189,81 | 120,23 | 111,37 | 93,51 | 75,89 | |||
С | 246,33 | 216,67 | 185,81 | |||||||
С | 113,23 | 104,37 | 86,51 | 68,89 | ||||||
т/ч | 26 | 32 | 10 | 28 | 16 | 7 | 4 | 18 | 171,83 |
2.2.7 Расчет коэффициентов недовыработки пара в отборах турбины
2.2.7.1 Коэффициент недовыработки пара в отборах для турбины без промперегрева:
= ()/() (2.2.7.1)
= (3185,25 – 2230,46)/(3455 – 2230,46) = 0,78
= ()/() (2.2.7.2)
= (3068,84 – 2230,46)/(3455 – 2230,46) = 0,68
= ()/() (2.2.7.3)
= (2941,15 – 2230,46)/(3455 – 2230,46) = 0,58
= ()/() (2.2.7.4)
= (2656,67 – 2230,46)/(3455 – 2230,46) = 0,35
= ()/() (2.2.7.5)
= (2616,6 – 2230,46)/(3455 – 2230,46) = 0,32
= ()/() (2.2.7.6)
= (2534,49 – 2230,46)/(3455 – 2230,46) = 0,25
= ()/() (2.2.7.7)
= (2464,85 – 2230,46)/(3455 – 2230,46) = 0,19
2.2.8 Определение расходов пара на турбину и абсолютных расходов пара и воды
2.2.8.1 Расход пара на турбину (при расчете необходимо учесть расход пара на сетевые подогреватели с коэффициентом недовыработки пара):
= 3600/(.η.η) + + (т/ч) (2.2.8.1)
где - коэффициент недовыработки пара соответствующего отбора;
= + + (+ + ) +…+ (2.2.8.2) =0,78.26+0,68.32+0,58.(10+18+80)+0,35.28+0,32.10+0,25.7+0,19.
.4 = 120,19
= 3600.80/(1224,54.0,98.0,99) + 120,19 + 0,25.96,91 = 386,83 (т/ч)
2.2.8.2 Расход перегретого пара котлов:
= α. (т/ч) (2.2.8.3)
= 1,024.386,83 = 396,11 (т/ч)
2.2.8.3 Расход питательной воды:
= α. (т/ч) (2.2.8.4)
= 1,034.386,83 = 399,98 (т/ч)
2.2.8.4 Расход добавочной воды:
= α. (т/ч) (2.2.8.5)
= 0,02.386,83 = 7,74 (т/ч)
2.2.9 Энергетические показатели турбоустановки и ТЭС
2.2.9.1 Полный расход тепла на турбоустановку:
= ( - ).10 (МВт) (2.2.9.1)
= (3455 – 920,6) .10 = 272,33 (МВт)
2.2.9.2 Расход тепла на производство:
= .10 (МВт) (2.2.9.2) где - энтальпия пара производственного отбора;
- энтальпия конденсата производственного отбора;
= 0,3. (т/ч) (2.2.9.3)
= 0,3.80 = 24 (т/ч)
= = 59,98 (МВт)
2.2.9.3 Расход тепла на турбоустановку для производства электроэнергии:
= - (МВт) (2.2.9.4)
где = + (МВт) (2.2.9.5)
= 60 + 59,98 = 119,98 (МВт)
= 272,33 – 119,98 = 152,35 (МВт)
3 ВЫБОР ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯТЕПЛОВОЙ СХЕМЫ БЛОКА
3.1 Выбор регенеративных подогревателей
Производительность и число регенеративных подогревателей для основного конденсата определяются числом имеющихся у турбин для эти целей отборов пара. При этом каждому отбору пара должен соответствовать один корпус подогревателя.
Регенеративные подогреватели низкого давления, как правило принимаются смешивающего типа число их определяется технико -экономическим обоснованием.
Регенеративные подогреватели устанавливаются без резерва.
Подогреватели поверхностного типа поставляются в комплекте с турбиной. С турбоустановкой ПТ-80-130 устанавливаются подогреватели следующего типа:
ПН-130-16-10-2 – 4 шт. с техническими характеристиками: площадь поверхности теплообмена 130 м, номинальный массовый расход воды – 63,9 кг/с, расчетный тепловой поток – 7,3 МВт, максимальная температура пара – 400, гидравлическое сопротивление при номинальном расходе воды – 0,09 МПа, высота – 4680 мм, диаметр корпуса – 1020 мм.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Respiration and Respiratory Systems
LUNG CANCER Up to the time of World War II, cancer of the lung was a relatively rare condition. The increase in its incidence in Europe after World War II was at first ascribed to better diagnostic methods, but by 1956 it had become clear that the r
- АВР секционного выключателя
ТРЕБОВАНИЯ К УСТРОЙСТВАМ АВР, ПРИНЦИПЫ ИХ ВЫПОЛНЕНИЯ И РАСЧЕТ ПАРАМЕТРОВТребования к устройствам АВР. В системах электроснабжения при
- АСУ двухстадийного дробления замкнутого цикла
Автоматизация технологических процессов является едва ли не решающим фактором повышения производительности и улучшения условий труда
- АСУТП Закаливание металла
ЗАКАЛИВАНИЕ МЕТАЛЛА Механизация и автоматизация производственных процессов, их основной части- технологических процессов- является од
- Автоматизация банковского офиса: как обслужить 10 000 клиентов в день?
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТКУРСОВАЯ РАБОТА«АВТОМАТИЗАЦИЯ БАНКОВСКОГО ОФИСА:КАК ОБСЛУЖИТЬ 10 000 КЛИЕНТОВ В ДЕНЬ»ПО
- Автоматизация процесса бурения
Автоматизация технологического процесса составляет важную часть научно-технического прогресса в проведении геологоразведочных работ
- Автоматизация процесса нитрования пиридона
Санкт-Петербургский государственный технологическийинститут(Технический университет)Кафедра автоматизации процессов химической про