AVR микроконтроллер AT90S2333 фирмы Atmel
Микроконтроллеры AT90S2333 и AT90S4433 фирмы Atmel
AT90S2333 и AT90S4433 - экономичные 8-битовые КМОП микроконтроллеры, построенные с использованием расширенной RISC архитектуры AVR. Исполняя по одной команде за период тактовой частоты, AT90S2333 и AT90S4433 имеют производительность около 1MIPS на МГц, что позволяет разработчикам создавать системы оптимальные по скорости и потребляемой мощности. В основе ядра AVR лежит расширенная RISC архитектура, объединяющая развитый набор команд и 32 регистра общего назначения. Все 32 регистра непосредственно подключены к арифметико-логическому устройству (АЛУ), что дает доступ к любым двум регистрам за один машинный цикл. Подобная архитектура обеспечивает десятикратный выигрыш в эффективности кода по сравнению с традиционными CISC микроконтроллерами. AT90S2333/4433 предлагают следующие возможности: 2кБ/4кБ загружаемой флэш памяти; 128/256 байт EEPROM; 128 байт статического ОЗУ, 20 линий ввода/вывода общего назначения; 32 рабочих регистра; настраиваемые таймеры/счетчики с режимом совпадения; внешние и внутренние прерывания; программируемый универсальный последовательный порт; 6-канальный 10-разрядный АЦП; программируемый сторожевой таймер со встроенным генератором; SPI последовательный порт для загрузки программ; два выбираемых программно режима низкого энергопотребления. Холостой режим (Idle Mode) отключает ЦПУ, оставляя в рабочем состоянии регистры, таймеры/счетчики, SPI порт и систему прерываний. Экономичный режим (Power Down Mode) сохраняет содержимое регистров, но отключает генератор, запрещая функционирование всех встроенных устройств до внешнего прерывания или аппаратного сброса. Микросхемы производятся с использованием технологии энергонезависимой памяти высокой плотности фирмы Atmel. Загружаемая флэш память на кристалле может быть перепрограммирована прямо в системе через последовательный интерфейс SPI или доступным программатором энергонезависимой памяти. Объединяя на одном кристалле усовершенствованный 8-битовый RISC процессор с загружаемой флэш памятью, AT90S2333/4433 являются мощными микроконтроллерами, которые позволяют создавать достаточно гибкие и эффективные по стоимости устройства. AT90S2333/4433 поддерживаются полной системой разработки включающей в себя компиляторы Си, макроассемблеры, программные отладчики/симуляторы, внутрисхемные эмуляторы и отладочные комплекты.
назначение вывода | номер вывода | номер вывода PDIP |
RESET | 29 | 1 |
PD0/RXD | 30 | 2 |
PD1/TXD | 31 | 3 |
PD2/INT0 | 32 | 4 |
PD3/INT1 | 1 | 5 |
PD4/T0 | 2 | 6 |
VCC | 4 | 7 |
GND | 5 | 8 |
XTAL1 | 7 | 9 |
XTAL2 | 8 | 10 |
PD5/T1 | 9 | 11 |
PD6/AIN0 | 10 | 12 |
PD7/AIN1 | 11 | 13 |
PB0/ICP | 12 | 14 |
PB1/OC1 | 13 | 15 |
PB2/SS | 14 | 16 |
PB3/MOSI | 15 | 17 |
PB4/MISO | 16 | 18 |
PB5/SCK | 17 | 19 |
AVCC | 18 | 20 |
AREF | 20 | 21 |
AGND | 21 | 22 |
PC0/ADC0 | 23 | 23 |
PC1/ADC1 | 24 | 24 |
PC2/ADC2 | 25 | 25 |
PC3/ADC3 | 26 | 26 |
PC4/ADC4 | 27 | 27 |
PC5/ADC5 | 28 | 28 |
ОПИСАНИЕ ВЫВОДОВ
GND - земля
Port B (PB5..PB0) - Порт B является 6-битовым двунаправленным портом ввода/вывода с внутренними подтягивающими резисторами. Выходные буферы порта B могут поглощать ток до 20мА. Если выводы PB0..PB5 используются как входы и извне устанавливаются в низкое состояние, они являются источниками тока, если включены внутренние подтягивающие резисторы. Кроме того Порт B обслуживает некоторые специальные функции, которые будут описаны ниже.
Port С (PС5..PС0) - Порт С является 6-битовым двунаправленным портом ввода/вывода с внутренними подтягивающими резисторами. Выходные буферы порта С могут поглощать ток до 20мА. Если выводы PС0..PС5 используются как входы и извне устанавливаются в низкое состояние, они являются источниками тока, если включены внутренние подтягивающие резисторы. Кроме того Порт С обслуживает аналоговые входы АЦП.
Port D (PD5..PD0) - Порт D является 8-битовым двунаправленным портом ввода/вывода с внутренними подтягивающими резисторами. Выходные буферы порта B могут поглощать ток до 20мА. Если выводы PD0..PD7 используются как входы и извне устанавливаются в низкое состояние, они являются источниками тока, если включены внутренние подтягивающие резисторы. Кроме того Порт D обслуживает некоторые специальные функции, которые будут описаны ниже.
RESET - Вход сброса. Удержание на входе низкого уровня в течение двух машинных циклов (если работает тактовый генератор), сбрасывает ус-
тройство.
XTAL1 - Вход инвертирующего усилителя генератора и вход внешнего тактового сигнала.
XTAL2 - Выход инвертирующего усилителя генератора.
AVCC - Вывод источника питания АЦП. Этот вывод через фильтр низкой частоты должен быть подключен к выводу питания процессора.
AREF - Вход опорного напряжения АЦП. Напряжение, подаваемое на этот вывод лежит в пределах 2.7В...AVCC.
AGND - Если плата имеет отдельный слой аналоговой земли, к нему подключается этот вывод. В противном случае этот вывод соединяется с GND.
КВАРЦЕВЫЙ ГЕНЕРАТОР
XTAL1 и XTAL2 являются входом и выходом инвертирующего усилителя, на котором можно собрать генератор тактовых импульсов. Можно использовать как кварцевые, так и керамические резонаторы. Если сигнал генератора необходимо использовать для управления внешними устройствами, сигнал с вывода XTAL2 снимается через одиночный буфер серии HC, при этом емкость конденсатора с вывода на землю уменьшается на 5pF. При подаче внешнего тактового сигнала вывод XTAL2 остается неподключенным, а XTAL1 подключается в выходу внешнего генератора.
Обзор архитектуры процессоров.
Регистровый файл быстрого доступа содержит 32 8-разрядных регистра общего назначения, доступ к которым осуществляется за один машинный цикл. Поэтому за один машинный цикл исполняется одна операция АЛУ. Два операнда выбираются из регистрового файла, выполняется операция, результат ее записывается в регистровый файл - все за один машинный цикл.
Шесть из 32 регистров можно использовать как три 16-разрядных указателя в адресном пространстве данных, что дает возможность использовать высокоэффективную адресную арифметику (16-разрядные регистры X, Y и Z). Один из трех адресных указателей (регистр Z) можно использовать для адресации таблиц в памяти программ.
АЛУ поддерживает арифметические и логические операции c регистрами, с константами и регистрами. Операции над отдельными регистрами также выполняются в АЛУ.
Кроме регистровых операций, для работы с регистровым файлом могут использоваться доступные режимы адресации, поскольку регистровый файл занимает адреса 00h-1Fh в области данных, обращаться к ним можно как к ячейкам памяти.
Пространство ввода/вывода состоит из 64 адресов для периферийных функций процессора, таких как управляющие регистры , таймеры/счетчики и
другие. Доступ к пространству ввода/вывода может осуществляться непосредственно, как к ячейкам памяти расположенным после регистрового файла (20h- 5Fh).
Процессоры AVR построены по гарвардской архитектуре с раздельными областями памяти программ и данных. Доступ к памяти программ осуществляется при помощи одноуровнего буфера. Во время выполнения команды, следующая выбирается из памяти программ. Подобная концепция дает возможность выполнять по одной команде за каждый машинный цикл. Память программ - это внутрисистемная загружаемая флэш-память.
При помощи команд относительных переходов и вызова подпрограмм осуществляется доступ ко всему адресному пространству. Большая часть команд AVR имеет размер 16-разрядов, одно слово. Каждый адрес в памяти программ содержит одну 16- или 32-разрядную команду.
При обработке прерываний и вызове подпрограмм адрес возврата запоминается в стеке. Стек размещается в памяти данных общего назначения, соответственно размер стека ограничен только размером доступной памяти данных и ее использованием в программе. Все программы пользователя должны инициализировать указатель стека (SP) в программе выполняемой после сброса (до того как вызываются подпрограммы и разрешаются прерывания). 8-разрядный указатель стека доступен для чтения/записи в области ввода/вывода.
Доступ к статическому ОЗУ, регистровому файлу и регистрам ввода/вывода осуществляется при помощи пяти доступных режимов адресации поддерживаемых архитектурой AVR.
Все пространство памяти AVR является линейным и непрерывным. Гибкий модуль прерываний имеет собственный управляющий регистр в
пространстве ввода/вывода, и флаг глобального разрешения прерываний в регистре состояния. Каждому прерыванию назначен свой вектор в начальной области памяти программ. Различные прерывания имеют приоритет в соответствии с расположением их векторов. По младшим адресам расположены векторы с большим приоритетом.
Файл регистров общего назначения
Все команды оперирующие регистрами прямо адресуются к любому из регистров за один машинный цикл. Единственное исключение - пять команд оперирующих с константами SBCI, SUBI, CPI, ANDI, ORI и команда LDI, загружающая регистр константой. Эти команды работают только со второй половиной регистрового файла - R16..R31. Команды SBC, SUB, CP, AND и OR, также как и все остальные, применимы ко всему регистровому файлу.
Каждому регистру присвоен адрес в пространстве данных, они отображаются на первые 32 ячейки ОЗУ. Хотя регистровый файл физически размещен вне ОЗУ, подобная организация памяти дает гибкий доступ к регистрам. Регистры X, Y и Z могут использоваться для индексации любого регистра. Кроме обычных функций, регистры R26..R31 имеют дополнительные функции, эти регистры можно использовать как адресные указатели в области памяти данных. Эти регистры обозначаются как X,Y,Z и определены следующим образом:
Регистр X | 15 0 | |
7 0 | 7 0 | |
1Bh (R27) | 1Ah (R26) |
Регистр Y | 15 0 | |
7 0 | 7 0 | |
1Dh (R29) | 1Ch (R28) |
Регистр Z | 15 0 | |
7 0 | 7 0 | |
1Fh (R31) | 1Eh (R30) |
При различных режимах адресации эти регистры могут использоваться как фиксированный адрес, для адресации с автоинкрементом или с автодекрементом.
Арифметико-логическое устройство - АЛУ
АЛУ процессора непосредственно подключено к 32 регистрам общего назначения. За один машинный цикл АЛУ производит операции между регистрами регистрового файла. Команды АЛУ разделены на три основных категории - арифметические, логические и битовые.
Загружаемая память программ.
AT90S2333/4433 содержат 2/4 кБ загружаемой флэш памяти для хранения программ. Поскольку все команды занимают одно 16- или 32-разрядное слово, флэш память организована как 1/2 Kx16. Флэш-память выдерживает не менее 1000 циклов перезаписи. Программный счетчик имеет ширину 10/11 бит и позволяет адресоваться к 1024/2048 словам программной флэш-памяти.
Подробно загрузка флэш памяти будет рассмотрена дальше.
EEPROM память данных
AT90S2333/4433 содержат 128/256 байт электрически стираемой энергонезависимой памяти (EEPROM). EEPROM организована как отдельная область данных, каждый байт которой может быть прочитан и перезаписан. EEPROM выдерживает не менее 100000 циклов записи/стирания. Доступ к энергонезависимой памяти данных рассмотрен ниже и задается регистрами адреса, данных и управления. Дальше будет рассмотрена загрузка данных в EEPROM через SPI интерфейс.
Статическое ОЗУ данных
На рисунке приведенном ниже показана организация памяти данных в AT90S2333/4433.
224 ячейки памяти включают в себя регистровый файл, память ввода/вывода и статическое ОЗУ данных.
Первые 96 адресов используются для регистрового файла и памяти ввода/вывода, следующие 128 - для ОЗУ данных.
При обращении к памяти используются пять различных режимов адресации: прямой, непосредственный со смещением, непосредственный, непосредственный с предварительным декрементом и непосредственный с постинкрементом. Регисты R26..R31 регистрового файла используются как указатели для непосредственной адресации. Прямая адресация имеет доступ ко всей памяти данных. Непосредственная адресация со смещением используется для доступа к 63 ячейкам базовый адрес которых задается содержимым регистров Y или Z.
Для непосредственной адресации с инкрементом и декрементом адреса используются адресные регистры X, Y и Z.
При помощи любого из этих режимов производится доступ ко всем 32 регистрам общего назначения, 64 регистрам ввода/вывода и 128 ячейкам ОЗУ.
Время выполнения команд.
ЦПУ процессора AVR управляется системной частотой генерируемой внешним резонатором. Внутреннее деление частоты генератора не используется. В процессоре организован буфер (pipeline) команд, при выборе команды из памяти программ происходит выполнение предыдущей команды. Подобная концепция позволяет достичь быстродействия 1MIPS на MHz, уникальных показателей стоимости, быстродействия и потребления процессора.
Регистровый файл | Область адресов данных |
R0 | 00h |
R1 | 01h |
: | : |
R30 | 1E |
R31 | 1F |
Регистры ввода\вывывода | |
00h | 20h |
01h | 21h |
: | : |
3Eh | 5Eh |
3Fh | 5Fh |
- | Встроенное ОЗУ |
- | 61h |
- | : |
- | DEh |
- | DFh |
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Bachelor
СОДЕРЖАНИЕВВЕДЕНИЕ 2 1.Анализ технического задания 6 2.Выбор и обоснование структурной схемы устройства защиты 103. Описание принципа рабо
- Cкремблирование и дескремблирование линейного сигнала
Министерство науки и образования УкраиныЗапорожский национальный технический университетКафедра радиотехникиКурсовая работапо дисц
- HDTV - телевидение высокой четкости
Рефератпо курсу «Основы телевидения»«HDTV – телевидение высокой четкости»2002г.Содержание:· Часть 1: HDTV – телевидение высокой четкости 1
- KURS
Задание. Создать МП систему управления настройкой приемника. Упрощенная схема приемника изображена на рис. 1.Рис 1 Контур приемника сост
- Motorola MC68HC705C8
Однокристальная микроЭВМ МС68НС705С8Введение Однокристальная микроЭВМ (далее ОЭВМ) МС68НС705С8 входит в серию М68НС05 относительно дешевых О
- Автомат для дозарядки АБ
Министерство образования РФТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТКАФЕДРА ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИПОЯСНИТЕ
- Автоматическая коммутация
Контрольная работа.Вариант 1.Задание 1.1. Пояснить назначение, принцип построения и параметры заданного коммутационного блока АТСКУ.2.
Copyright © https://www.referat-web.com/. All Rights Reserved