Скачать

Топливо в структуре энергетических ресурсов

Когда в середине XVII столетия голландский естествоиспытатель Ван Гельмонт придумал понятие "газ", он и не подозревал, какие страсти будут бушевать вокруг этого короткого слова спустя 400 лет. Действительно, теперь о том, что это фазовое состояние вещества, при котором оно "занимает весь предоставленный ему объем" знают лишь школьники да специалисты. Для всего остального человечества газ – это, в первую очередь, свет, тепло, комэфорт и деньги, деньги, деньги… Конечно, речь в этом случае идет о "голубом топливе"- природном газе.

В ХХ в. энергетические потребности человечества увеличились в 20 раз. Ныне в промышленности развитых странах на одного жителя расходуется свыше 10 т условного топлива (т у. т.) в год (1 т у. т. эквивалента 1 т угля и дает при сжигании 29 308 МДж теплоты). В 1986 г. общее энергопотребление населения Земли превысило 13 млрд. т у. т. Ожидается, что к 2020 г. эта цифра возрастет до 30 … 38 млрд. Энергетические потребности государства обеспечивает его топливно-энергетический комплекс. При этом большое значение придается экономии органического топлива и в первую очередь нефти. Однако, запасы нефти ограничены, разработка и освоение новых месторождений требуют значительных капиталовложений (за последние 20 лет они возросли в 3 раза), все больших затрат трудовых и материальных ресурсов. Нефть во все больших количествах используется в химических производствах, где она является незаменимым сырьем в ряде приоритетных отраслей народного хозяйства.

Таким образом, одним из основных направлений энергосберегающей политики является экономия наиболее ценного органического сырья — нефти. Решение этой проблемы заключено во внедрении ресурсосберегающих технологий, использовании менее энергоемких машин, сокращении применения нефтепродуктов в качестве топлива с заменой их нефтяными (альтернативными) энергоносителями — в первую очередь газом и углем. Первым направлением занимаются нефтедобывающие и нефтеперерабатывающие отрасли промышленности, базирующиеся на научных разработках соответствующих разделов химмотологии. Перспективы здесь можно охарактеризовать тем, что повышение выхода топлив из нефти только на 1 % эквивалентно увеличению ее добычи до 7 млн. т в год.

Двигатели внутреннего сгорания являются основными потребителями нефти, служащей сырьем для производства автотракторных топлив и смазочных материалов (до 60 % нефти, добываемой в стране, расходуется на эти цели).

Существенная экономия топлива обеспечивается использованием высококачественных, в том числе синтетических моторных масел. Применение антифрикционных металлокомплесных присадок к моторным маслам позволяет уменьшить расход топлива до 4 % при одновременном увеличении ресурса двигателя.

Третье направление заключается в отказе от использования нефти в качестве энергоисточника с заменой ее на другие менее дефицитные энергоресурсы. Нужно искать эффективные методы преобразования имеющихся в достатке энергоресурсов В высококачественный энергоноситель, удовлетворяющий требованиям, предъявляемым к топливам для ДВС. Рассмотрение таких перспективных энергоресурсов дано в гл. 1. В качестве альтернативы нефтяных топлив рассматривают энергетические аккумуляторы.

1. Для комплексной оценки топлив и смазочных материалов (Т и С) используют понятие качества. Под качеством Т и С понимают совокупность отдельных показателей (показателей качества), характеризующих его свойства.

Качество Т и С влияет на такие важнейшие показатели ДВС, как экономичность, долговечность, токсичность отработавших газов, металлоемкость и др. Например, путем использования высокоэффективных Т и С ресурс двигателя можно увеличить в 1,5 … 2 раза, В токсичность отработавших газов уменьшить в несколько раз, В общем случае качество Т и С должно в наибольшей степени удовлетворять формуле "эффективность — экономичность — экология" т.е. обеспечивать максимальную эффективность использования в двигателе при минимальных технологических и эксплуатационных расходах наряду с возможно меньшим воздействием на окружающую среду (от экономии невосстанавливаемых природных ресурсов до загрязнения атмосферы).

При оценке качества Т и С учитываются следующие факторы: полнота удовлетворения требований потребителя; технические и экономические возможности производства, экономический эффект в народном хозяйстве (у потребителя); взаимное влияние отдельных свойств Т и С (необоснованное улучшение одних свойств может повлечь за собой ухудшение других).

Особо следует отметить проблему надежности Т и С, под которой понимается способность этих материалов сохранять свои показатели качества в течение заданного ресурса. От надежности Т и С непосредственно зависит надежность ДВС, условия и экономическая эффективность использования двигателя.

Лабораторные методы используют при определении физико-химических показателей, характеризующих качество Т и С, для косвенной оценки их отдельных функциональных свойств, а также при проведении научно-исследовательских работ. Основное достоинство лабораторных методов испытаний состоит в том, что с их помощью можно выполнить дифференцированную оценку отдельных свойств Т и С и уяснить физический смысл результатов испытаний Т и С в реальных условиях. С целью интенсификации методов оценки качества Т и С создана новая система лабораторных испытании, суть которой основана на том, что каждое эксплуатационное свойство разделяют на отдельные, относительно простые составляющие показатели, оцениваемые ускоренными лабораторными методами. Полученные данные рассматривают во взаимосвязи с конкретными условиями работы Т и С. Такая комплексная оценка позволяет достаточно полно оценить исследуемые эксплутационные свойства в целом Однако вследствие большой сложности процессов, происходящих в двигателе, лабораторные методы не дают возможности получить достаточно полное представление о работе Т и С в реальных условиях. Это можно сделать на основании анализа результатов, полученных специальными методами испытаний.

Основной недостаток эксплуатационных испытаний — большая длительность (до нескольких лет). Это задерживает внедрение новых сортов Т и С и, следовательно, технический прогресс моторостроения, поэтому для оценки одного или нескольких эксплуатационных свойств Т и С широко распространились стендовые методы испытаний, выполняемые на модельных установках, натурных агрегатах, одноцилиндровых установках и полноразмерных двигателях. Эти методы объединяют общим названием — квалификационные методы испытаний. Они по сравнению с лабораторными методами позволяют более точно и полно оценить эксплуатационные свойства Т и С, а по сравнению с эксплуатационными испытаниями — упростить условия и в несколько раз сократить длительность испытаний. Наряду с этим во многих случаях квалификационные методы по сравнению с эксплуатационными позволяют уменьшить влияние посторонних факторов на исследуемый показатель, а, следовательно, повысить точность и объективность испытаний. Квалификационные методы используют для установления взаимосвязи между показателями качества Т и С и конструкцией ДВС, для разработки требований к качеству Т и С, классификации и унификации Т и С и пр. Разработан способ исследования Т и С на основе комплекса методов квалификационной оценки, позволяющий в короткое время определить эксплуатационные свойства исследуемого образца.

Однако окончательное решение о возможности использования того или иного вида Т и С в данной конструкции ДВС принимают на основании эксплуатационных испытаний. Применение различных методов испытаний указано в стандартах и технических условиях.

В условиях производства показатели качества определяют не только рациональность применения данного вида Т и С в двигателе, но и производственные затраты на его изготовление. Как правило, повышение качества продукции ведет к увеличению производственных затрат, а иногда к уменьшению ресурса этого продукта, поэтому улучшение качества Т и С необходимо рассматривать в неразрывной связи между возможным повышением стоимости производства продукта и экономией, получаемой при его использовании, т.е. повышение качества Т и С должно сопровождаться экономическим эффектом в масштабе государства.

понятие топлива

Топливо, не содержащее в своем составе окислитель, часто называют горючее. Понятие топлива более общее, нежели горючее или горючее ископаемое, потому как включает в себя древесину и различные топливные смеси. В широком смысле — один из видов потенциальной энергии, энергоноситель.

Химическая или ядерная энергия топлива переводится в различные виды энергии, и чаще всего через преобразование выделяемого при реакциях тепла тепловыми двигателями.

Основной показатель топлива — теплотворная способность (теплота сгорания). Для целей сравнения видов топлива введено понятие условного топлива (теплота сгорания одного килограмма "условного топлива" (у.т.) составляет 29,3 МДж или 7000 ккал — что примерно соответствует каменному углю).

Печное бытовое топливо предназначено для сжигания в отопительных установках небольшой мощности, расположенных непосредственно в жилых помещениях, а также в теплогенераторах средней мощности, используемых в сельском хозяйстве для приготовления кормов, сушки зерна, фруктов, консервирования и других целей.

Стандарт на котельное топливо — ГОСТ 10585-99 предусматривает выпуск четырёх его марок: флотских мазутов Ф-5 и Ф-12, которые по вязкости классифицируются как лёгкие топлива, топочных мазутов марки 40 — как среднее и марки 100 — тяжелое топливо. Цифры указывают ориентировочную вязкость соответствующих марок мазутов при 50 °C.

Печное топливо темное вырабатывается из дизельных фракций прямой перегонки и вторичного происхождения — дистиллятов термического, каталитического крекинга и коксования.

По фракционному составу печное топливо может быть несколько тяжелее дизельного топлива по ГОСТ 305-82 (до 360 °C перегоняется до 90 процентов вместо 96 процентов, вязкость печного топлива до 8,0 мм2/с при 20 °C против 3,0…6,0 мм2/с дизельного).

При изготовлении печного топлива не нормируются цетановое и йодное числа, температура помутнения. При переработке сернистых нефтей массовая доля серы в топливе — до 1,1 %.

Для улучшения низкотемпературных свойств печного топлива в промышленности применяют депрессорные присадки, синтезированные на основе сополимера этилена с винилацетатом.

Характеристики: 10 % перегоняется при температуре, С, не ниже 160; 90 % перегоняется при температуре, С, не выше 360; кинематическая вязкость при 20 °C, мм2/с, не более 8,0; температура вспышки в закрытом тигле, С, не ниже 45; массовая доля серы, процентов, не более: в малосернистом топливе 0,5; в сернистом топливе 1,1; испытание на медной пластинке выдерживает; кислотность, мг КОН/100 см3 топлива, не более 5,0; зольность, процентов, не более 0,02; коксуемость 10 процентного остатка, не более 0,35 процентов; содержание воды: следы; цвет: от светло-коричневого до чёрного; плотность при 20 °C, кг/м3: не нормируется, определение обязательно.


1.Классификация топлив

Топлива для ДВС разделяют по типу двигателя, для использования в котором они предназначены, на бензины и дизельные топлива; по агрегатному состоянию — на жидкие и газообразные; по химическому составу — на углеводородные и неуглеводородные; по виду исходного сырья — на нефтяные и альтернативные; по способу хранения на автомобиле — на одно- и многокомпонентные (последние называют топливами раздельной подачи).

Термины "бензин" и "дизельное топливо" используют для обозначения нефтяных топлив, применяемых соответственно для двигателей с принудительным воспламенением и для дизелей.

Различие между жидкими и газообразными топливами заключено в их разных агрегатных состояниях при нормальных атмосферных условиях. В современной транспортной технике преимущественное применение получили жидкие топлива. Под газообразными (газовыми) топливами понимается топливо, поступающее в систему топливоподачи двигателя в газовой фазе. Газообразные топлива могут находиться в топливном баке транспортного средства в сжатом или сжиженном состоянии. В первом случае газы называют сжатыми, во втором сжиженными. Такое деление условно. Агрегатное состояние газа определяется параметрами его хранения в топливных емкостях (баках) — температурой и давлением. В зависимости от конструкции бака один и тот же газ может находиться в них как в жидкой, так и в газовой фазе. Например, метан используется и как сжатый газ, находящийся в баках (баллонах) под высоким давлением (до 20 МПа), и как сжиженный, находящийся в термостатированных емкостях при температуре, равной или ниже температуры сжижения (—161 °С).

Газообразные топлива — перспективный вид топлив для ДВС. Это объясняется следующими основными преимуществами этих топлив перед жидкими: меньшей стоимостью; снижением износа и повышением долговечности цилиндропоршневой группы двигателей; уменьшением потребности в высококачественных моторных маслах и увеличением срока их бессменной работы в двигателе; большей полнотой сгорания и, как следствие этого, меньшим загрязнением среды.

К нефтяным относят топлива, изготовленные из природной нефти. Нефтяные топлива являются основными топливами для сов ременных ДВС, что объясняется их преимуществами перед другими видами топлив: освоенностью производства, транспортировки, хранения и подачи в камеру сгорания, относительной простотой смесеобразования и пр.

К альтернативным топливам относят все виды топлив, для получения которых в качестве основного сырья не использована природная нефть.

Если смесь нефтяного и альтернативного топлив обладает достаточной физико-химической стабильностью при заданных эксплуатационных условиях, то такое топливо можно рассматривать как нефтяное топливо, в которое введены определенные добавки. В противном случае либо если это рационально по другим техникоэксплуатационным показателям, нефтяное и альтернативное топливо применяют как топлива раздельной подачи. Как показывает само название, под топливами раздельной подачи понимают двух- или более компонентные топлива, отдельные компоненты которых хранят на борту автомобиля раздельно. Смешиваются эти компоненты непосредственно во впускном тракте или в цилиндре двигателя. Применяют топлива раздельной подачи в случае физико-химической нестабильности компонентов при их предварительном смешении, а также при необходимости (или целесообразности) раздельного регулирования расхода отдельных компонентов. Например, для облегчения запуска холодного газового двигателя может использоваться нефтяное топливо, а для увеличения детонационной стойкости бензина на определенных режимах работы двигателя — добавка высокоактивных компонентов только на ЭТИХ режимах и т.п. Недостатком топлив раздельной подачи является усложнение конструкции, вызываемое наличием автономных систем хранения, подачи и регулирования каждого из компонентов топлива.


2. Основные современные виды топлив

2.1 Твердое топливо

Горючие вещества, основной составной частью которых является углерод. К твердому топливу относят каменный уголь и бурые угли, горючие сланцы, торф и древесину. Свойства топлива в значительной степени определяются его химическим составом — содержанием углерода, водорода, кислорода, азота и серы. Одинаковые количества топлива дают при сжигании различное количество теплоты. Поэтому для оценки качества топлива определяют его теплотворную способность, то есть наибольшее количество теплоты, выделяющееся при полном сгорании 1 кг топлива (наибольшая теплотворная способность у каменного угля). В основном твердое топливо применяют для получения теплоты и других видов энергии, которые затрачиваются на получение механической работы. Кроме того, из твердого топлива при его соответствующей обработке (перегонке) можно получить более 300 различных химических соединений. Большое значение имеет переработка бурого угля в ценные виды жидкого топлива — бензин и керосин.

2.1.1 Древеси́на

Состав Основная часть – целлюлоза (до 50 % объема), природный полимер, самая важная часть древесинного вещества.

Целлюлоза заполнена лигнином. У хвойной древесины его примерно 25…35 % объема древесины, у лиственной меньше – 15…25 %. Лигнин – очень сложное химическое вещество, с трудом отделяемое от целлюлозы. В состав древесины входят еще и гемицеллюлозы, экстрактивные вещества, которые определяют цвет, запах, вкус, стойкость древесины к загниванию, огнестойкость и проницаемость влаги (гигроскопичность). Они служат сырьем для многих очень нужных веществ – красок, эфирных масел, жиров и пр. В зависимости от породы, условий произрастания и заготовки в древесине содержится 5…30 % экстрактивных веществ.

Общая характеристика

Древесина является горючим материалом, но как органический материал, при горении долго остается прочной. При обугливании поверхности образуется защитный слой, благодаря которому замедляется проникновение огня вглубь древесной ткани. В случае пожара, при горении дерева не образуется едких веществ.

Применение

На химической переработке древесины основаны многие лесохимические производства (пиролиз и гидролиз раститительных материалов, производство целлюлозы, канифоли, скипидара, дубильных веществ). Применение древесины в качестве химического сырья непрерывно увеличивается.

2.1.2 Горючий сланец

Состав Горючий сланец состоит из преобладающих минеральных (кальциты, доломит, гидрослюды, монтмориллонит, каолинит, полевые шпаты, кварц, пирит и др.) и органических частей (кероген), последняя составляет 10…30 % от массы породы и только в сланцах самого высокого качества достигает 50…70 %. Органическая часть является био- и геохимически преобразованным веществом простейших водорослей, сохранившим клеточное строение (талломоальгинит) или потерявшим его (коллоальгинит); в виде примеси в органической части присутствуют измененные остатки высших растений (витринит, фюзенит, липоидинит).

Общие характеристики

По внешнему виду горючие сланцы слоистые, реже плотные, массивные, иногда расслаивающиеся на плитки породы темно-серого или коричневого цвета различных оттенков; при воспламенении горят коптящим пламенем. Кероген - продукт превращения в естественных условиях разных материалов растительного и животного происхождения, образовавший отложения сапропелитовой и гумусовой природы.

Различают следующие основные типы: собственно сапропелитовые-кукерситы, в которых преобладают продукты превращения простейших водорослей и животных материалов (залегают главным образом в Прибалтийском бассейне, а также в Волжском и др.); гумито-сапропелитовые, где значительную долю составляют измененные остатки высших растений (распространены в Карпатах и др.).

Происхождение

Горючие сланцы — порода смешанного обломочного и органогенного происхождения; образуются на дне морей, лагун, озер при одновременном осаждении глинистых частиц, карбонатного вещества и сапропелевого ила с органическими остатками (планктон, высшие растения) в условиях ограниченной циркуляции воды и воздуха. Скопившаяся органическо-минеральная масса постепенно уплотняется и преобразуется в плотную осадочную породу.

Способы добычи

Саратовскими учеными и инженерами разработан и апробирован принципиально новый и экономически безопасный способ добычи и переработки горючих сланцев. Добывать сланцы открытым способом можно, но не всегда и не везде. Строить шахты нерентабельно. Саратовский способ – безшахтный, основанный на создании подземных горизонтальных каналов большого диаметра.

Применение

В промышленности горючие сланцы используют как топливо и химическое сырье , добываемые главным образом в Прибалтийском и Волжском бассейнах (содержат 10…15% влаги, удельная теплота сгорания 6…10 МДж/кг), сжигают в котельных электростанций, на что расходуется 75 % всей добычи сланцев в стране. Зольный остаток от сжигания горючих сланцев применяют для получения вяжущих строит. материалов типа цемента.

Термической переработкой горючих сланцев в условиях полукоксования (450…550°С) получают смолу (10…30 %), газовый бензин (1,0…1,5 %), пирогенетическую воду и горючие газы с высокой теплотой сгорания. Смола полукоксования кукерситов содержит 20…25 % фенолов, а также парафиновые, алифатические, нафтеновые и ароматические углеводороды. Смола полукоксования горючих сланцев Приволжского бассейна (25…28 % в расчете на кероген) отличается высоким содержанием сераорганических соединений тиофена, бензтиофена; применяется она для приготовления ихтиола. Высокотемпературным коксованием (950…1000 оС) кукерситов производят бытовой газ (350…400 м3/т) с удельной теплотой сгорания 15,9…17,6 МДж/кг, газовый бензин (10 кг/т) и смолу (50 кг/т). Из сланцевой смолы получают антисептики, противоэрозионные препараты, растворители, синтетические смолы, шпалопропиточное масло, дорожный битум, сырье для производства электродного кокса.

2.1.3 Сапропе́ль

Состав Сапропель содержит кальций, железо, фосфор, биологически активные вещества - витамины, стимуляторы роста, гормоны, антибиотики и другие.

Сапропель состоит из илового раствора, скелета и коллоидного комплекса. В иловый раствор входит вода и растворенные в ней вещества - минеральные соли, низкомолекулярные органические соединения, витамины и ферменты. Скелет, или состав сапропеля представляет собой неразложившиеся остатки растительного происхождения, а коллоидный комплекс - сложные органические вещества, которые придают сапропелю желеобразную консистенцию.

Общая характеристика

Рассматривая сапропель под микроскопом, можно увидеть аморфные коллоидальные массы, среди которых встречаются животные и растительные остатки. В зависимости от состава органической и минеральной частей сапропели подразделяют на несколько видов. В одном озере может находиться два-три вида сапропелей. Смена видов сапропелей идет, с одной стороны, по вертикали, в зависимости от глубины залегания сапропеля, с другой - от степени удаленности от берега и характера окружения озера.

Сапропели разделяются по химическому составу минеральной части как менее изменяющейся: на кремнеземистые, известковистые и смешенного типа.

По содержанию органического вещества сапропели подразделяет на две группы: на собственно сапропели, содержащие больше чем 50 % органического вещества, и на обедненные органическим веществом сапропели, имеющие его в своем составе 15…50 %.

Многообразие сапропелевых отложений можно разделить по содержанию в них органического вещества на четыре типа: органические (зольность до 30 %), органо-минеральные (зольность 30…50 %), минерально-органические (зольность 50…70 %) и минерализованные (зольность 70…85 %).

Многообразие классификаций и типологических характеристик сапропелей объясняется сложностью их строения и древностью происхождения.

Важной особенностью органической части сапропеля является высокое содержание (до 50 %) гуминовых соединений, которые во многом определяют характер и свойства илов данной составной частью. Гуминовые кислоты, содержащиеся в сапропелях, имеют различные уровни химической активности, а от этого зависит бактерицидное действие сапропелей. Более выраженным антимикробным действием обладают гуминовые кислоты кремнеземных сапропелей. Характерной особенностью сапропелей является высокое влагонасыщение в естественном состоянии. Естественная влажность сапропелевых отложений составляют 84,0…96,0 % (в среднем - 88,4 %). Различие влажности объясняются неоднородностью химического состава сапропелей и разным соотношением зольной и органической частей. Органическое вещество способно связывать большее количество воды, чем минерализованное, за счет осмотического проникновения молекул воды и образования водородных связей с функциональными группами твердой фазы сапропелей.

Следовательно, чем больше органического вещества в сапропеле, тем выше его влажность. В сапропелях отмечают различные категории воды. Основную категорию удерживаемой сапропелем воды (до 70 … 80 % полной влагоемкости) составляет слабосвязанная вода макропор, которая удерживается в материале механически и не обладает сколько-нибудь заметной энергией связи, 12…15 % приходится на воду, иммобилизованную внутри рыхлых коллоидов, 8…15 %-это физически связанная вода, в том числе 3…5 %- прочносвязанная.

Свободная вода является средой для развития микробиологических и связанных с ними физико-химических процессов в сапропелях, в результате этого в них накапливаются многие вещества, которые затем могут быть извлечены водой. Кроме этого, сильно развитая удельная поверхность сапропелей способствует развитию процессов химического взаимодействия воды с твердой фазой, из которой вода в результате длительного контакта способна насыщаться многими растворимыми органическими и минеральными компонентами. Поэтому химический состав водной фазы озерных отложений отличается более высокой общей минерализацией по сравнению с соответствующей озерной водой, повышенным содержанием свободных и гидролизуемых веществ, отдельных макро- и микроэлементов.

При оценке сапропелей с позиции их практического использования и переработки важное значение имеет их зольность, то есть количественное содержание и состав золообразующих компонентов. В зависимости от форм связи неорганических элементов с органическим веществом сапропели подразделяются на три группы: первая - неорганические компоненты, отделяемые физическим методом. Эта группа характеризует обогатимость сапропелей; вторая - неорганические компоненты, переходящие в раствор при кислотной и щелочной обработке. Неорганические элементы этой группы важны для выбора области применения сапропелей; третья - прочно связанные неорганические компоненты (органо-минеральные соединения). Содержание зольных элементов первой группы в сапропелях по отношению к общей зольности в кремнеземистых сапропелях достигает 45 %, в карбонатных -14 %, в органических -10 % .

Сапропели в естественном состоянии - это многокомпонентные полидисперсные системы. Содержание органического вещества в сапропелях составляют 15…95 % массы сухого вещества. Состав органического вещества сапропелей представлен битумоидами, углеводным комплексом (гемицеллюлозы и целлюлозы), гуминовыми веществами (гуминовыми кислотами, фульвокислотами), негидролизуемым остатком. Многообразие природы сапропелеобразователей обусловило появление осадков с различным составом органического вещества, количеством целлюлозы, структуре гуминовых кислот. Если в составе сапропелеобразователей содержится значительное количество водорослевых компонентов, то происходит накопление легкогидролизуемых соединений, возникновение гуминовых кислот амидоуглеводной природы, низкий уровень целлюлозы.

Гуминовые кислоты являются основной группой биологически активных веществ в сапропелях. В среде сапропелей развивается специфическая микрофлора, которая обогащает их биологически активными веществами, -каротины, хлорофилл, ксантофиллы, стерины, органические кислоты, спирты, гормоноподобные вещества и другие соединения. Ценную группу биологически активных веществ образуют витамины, среди которых выделены в сапропелях различных регионов страны витамины группы В (В1, В2, В3, В6, В12), С, Е.

Основными компонентами органического комплекса сапропелей являются легкогидролизуемые и гуминовые вещества, на которые приходится 60…80 % органического вещества. Соотношение компонентов в сапропелевых осадках изменяется в больших пределах, в частности, содержание гуминовых кислот изменяется от 4…9 до 50…60 % от органического вещества.

В органических сапропелях количество органического вещества составляет 70…93% от сухого вещества, в кремнеземистых и карбонатных - 15…60 %, а в смешанных - от 43 до 58 %. Суммарное количество водорастворимых и легкогидролизуемых веществ в сапропелеобразователях от органического вещества составляет 30…60 %, в том числе гемицеллюлоз - 10...27 %, целлюлозы – 9…39 %. Геммицеллюлозные сахара составляют 80 % суммы сахаров, а содержание моносахаридов в составе легкогидролизуемых веществ – 6…8 % от органического вещества и гексоз от суммы сахаров – 42…78 % при соотношении пектоз и гексаз - 1:1-2. Установлено в сапропелях содержание от суммы моносахаридов глюкозы – 11…52 %, галактозы и маннозы - по 6…15, ксилозы – до 15 %, арабинозы и рамнозы - по 10…6 %. В целом сапропели бедны целлюлозой, на которую приходится в среднем 1…2 % от органического вещества и содержание ее колеблется от 0,1 до 8,5 %, что объясняется не только ее небольшим поступлением с растительным материалом, но и значительными превращениями в ходе сапропелеобразования.

Количество азота в сапропелях различных типов от содержания органического вещества составляет 2,7…6,0 %, а от сухого вещества - 0,5…4,0 %. В органическом веществе сапропелей, содержащем остатки зооорганизмов, количество азота больше и составляет 4,4…4,8 %, тогда как в водорослевых - 3,0…4,2 % и торфянистых - 2,6…3,5 %. Количество аммиачного азота в сапропелях (в пересчете от общего) колеблется от 0,4 до 0,8 %, подвижного - от 3 до 25 % и данные показатели больше в сапропелях с повышенной зольностью. 25…50 % азота входит в состав аминокислот, что обуславливает питательную ценность сапропеля при скармливании его сельскохозяйственным животным и птице. В сапропелях выделено 17 аминокислот, из которых преобладают лизин, аргинин, треонин, метионин, фенилаланин, лейцин, аспарагиновая и глутаминовая кислоты, аланин, пролин, цистеин. Аминокислоты сапропелей в значительной степени входят в состав гуминовых кислот, где азот составляет около 7 %.

Содержание гемицеллюлоз составляют в среднем 5…8 % и повышается до 8…20 % (от органического вещества) в малозольных сапропелях, имеющих водорослевое происхождение. Содержание целлюлозы в среднем 1…2 % и увеличивается до 4..6 % в торфянистых сапропелях. Углеводный комплекс сапропелей, состоящий на 80 % и более из гемицеллюлоз, предопределяет возможность получения на основе сапропелей кормовых средств и удобрений.

В сапропелях различных типов содержание золы от сухого вещества колеблется в следующих пределах: в органических - 7…30 %, кремнеземистых

и карбонатных – 40…85 % и смешанных – 32…56 %. В золе сапропелей содержатся макроэлементы (кальций, фосфор, сера, калий, кремний и др.), микроэлементы (марганец, медь, кобальт, цинк, бор, молибден, кадмий, никель, фтор, хром, ванадий и другие), но их содержание зависит от типовой и видовой принадлежности того или иного отложения. Следует отметить, что содержание минеральных веществ в сапропелях по регионам страны подвержены большим колебаниям и изменениям. В сапропелях микроэлементы входят в органоминеральные соединения, сорбируются гелями кремнезема, глинозема, гидрооксидами железа. Активными комплексообразователями являются фракции гуминовых веществ (гуминовые кислоты, фульвокислоты). Они образуют с микроэлементами растворимые и нерастворимые комплексные соединения.

Происхождение

Сапропель - вещество преимущественно биологического происхождения, образующееся под водой, на дне пресноводных водоемов из остатков планктонных и бентосных организмов, при большой роли бактериальных процессов, происходящих в поверхностных слоях отложений при малом доступе кислорода.

Способы добычи

Гидравлический способ

С помощью размытия залежи струей воды с последущим всасыванием пульпы и транспортировки ее по плавучему трубопроводу на берег. Обладает большой производительностью, требует больших капитальных затрат и площадей для хранение добытого материала и его подготовки к переработке. Один из самых экологичеси небезопасных способов.

Гидромеханический способ

Включает рыхление залежи механической фрезой, частичное смешение сапропеля с водой, откачку полученного материала грязевым насосом на поверхность.Один из наиболее распространенных. Отличается хорошей производительностью. Целесообразен для добычи сапропеля идущего на удобрения, кормовые добавки, рекультиванты.

Экскаваторный способ

Применим в осушаемых озерах и с небольших глубин. Не везде возможен.

Шнековый и пневмо-шнековый способ

Извлечение сапропеля из дна водоема осуществляется при помощи шнекового насоса с подачей или без нее воздуха для разжижения извлекаемого материала. Один из перспективных методов ведения добычных работ для малого и среднего бизнеса. Отличается незначительной стоимостью оборудования, большим диапазоном по производительности, не требует отстойников и обезвоживания. Возможен забор сапропеля естественной влажности исключает ряд подготовительных стадий между добычей и перерабокой сапропеля. Экономичен.

Точечно-вакуумный способ

Извлечение сапропеля из-под воды осуществляется вертикальным вакуумным забором цилиндрической формы с запорным механизмом в нижней части. Вакуум в заборе создается в целях исключения загрязнения водоема и смешения сапропеля с водой

Малопроизводительный способ. Применим для лабораторных работ, добычи сапропеля для кормовых добавок, в лечебных целях, др. экономичен. популярен в фермерских хозяйствах и в оздоровительных грязелечебницах.

Всасывающий способ

Забор сапропеля с водоема осуществляется с помощью мощных самовсасывающих насосов для перекачки вязких веществ. Его применение целесообразно при наличии сапропеля во взвешенном состоянии незначительной плотности. Становиться популярен после появления на европейском рынке соответствующих малогабаритных и надежных насосов. Перспективный и экономичный при небольших потребностях сапропеля с доставкой его после извлечения на поверхность на небольшие расстояния.

Скреперно-всасывающий способ

Забор полезного ископаемого осуществляется скреперным наездом на сапропелевый пласт с последующей откачкой материала самовсасывающим насосом на берег. Применим при плотных залежах сапропеля на незначительной глубине. В основном пригоден для производства сапропелевых удобрения.

Применение

Сапропель как удобрение

Сапропель можно считать наиболее перспективным органическим удобрением. Производится из донных отложений пресноводных водоемов, которые сформировались из отмершей водной растительности, остатков живых организмов, из частиц перегноя, торфа и песка.

Использование ила обеспечивает замкнутый экологических цикл в системе почва-вода-растение-животное-человек с поддержанием круговорота веществ.

Сапропель как кормовая добавка

Сапропелевая кормовая добавка содержит 16 % белка, богата минеральными солями, аминокислотами и ферментами, которые способствуют более полному использованию питательных веществ кормов, усиливают функции пищеварительного тракта и использование азотистых соединений корма.

Очистка воды при помощи сапропеля

Метод сорбционной очистки воды один из наиболее эффективных способов решения проблемы обеспечения качества питьевой воды. В настоящее время при термической обработке сапропеля получают сорбенты Сибсорбент, Лесорб, Собойл-А и другие.

Использование сапропеля в качестве химического сырья и стройматериалов.

При сухой перегонке из сапропеля можно получать кокс, водный аммиак, метиловый спирт, бензин, парафиновое масло? Сапропель может широко использоваться как клей в производстве древесно-стружечных плит.

2.1.4 Торф

Состав Органическое вещество состоит из растительных остатков, претерпевших различную степень разложения. Перегной (гумус) придает торфу тёмную окраску. Относительное содержание в общей массе торфа продуктов распада растительных тканей, утративших клеточную структуру, называют степен