Скачать

Основні типи забруднювачів повітряного басейну та методи його очищення

РЕФЕРАТ

Курсова робота: 42 сторінки., 5 рисунків, 11 джерел.

Мета роботи: Охарактеризувати основні типи забруднювачів повітряного басейну, оцінити наслідки їх впливу на навколишнє середовище, привести приклади процесів очистки промислових газоподібних викидів, розглянути суть і механізми функціонування апаратів для знешкодження промислових газоподібних викидів.

Завдання роботи: описати класифікацію різних типів забрудників атмосферного повітря; розглянути особливості нормування викидів шкідливих речовин в атмосферу, розглянути і про класифікувати процеси повітря газоочисні апарати.

Об’єкти дослідження: атмосферне повітря; діяльність у сфері очищення повітря від промислових газових викидів, і методика процесів.

В роботі розглянуто проблему забруднення повітряного басейну, і який вплив це чинить на навколишнє середовище. В процесі виконання роботи було розглянуто методологічні підходи, з рядом методів по очищенню промислових газових викидів , описано декілька типів апаратного устаткування стосовно очищення повітря від промислових газових викидів .

Ключові слова:

ЗАБРУДНЕННЯ, ПРОМИСЛОВІ ГАЗОВІ ВИКИДИ, АТМОСФЕРНЕ ПОВІТРЯ, ГАЗООЧИСНІ АПАРАТИ, МЕТОДИ ОЧИСТКИ.


ЗМІСТ

Вступ

1. Типи забруднювачів повітряного басейну

2. Особливості та оцінка ступеню забруднення атмосферного повітря

3. Суть методів очистки промислових газових викидів

3.1 Абсорбційний метод

3.2 Адсорбційний метод

3.3 Термічне допалювання

3.4 Термокаталітичні методи

3.5 Озонні методи

3.6 Біохімічні методи

3.7 Плазмокаталітичний метод

4. Апарати для знешкодження промислових газових викидів

4.1 Апарати для абсорбції газових викидів

4.1.1 Поверхневі (плівкові) абсорбери.

4.1.2 Насадочні абсорбери

4.1.3 Барботажні абсорбери

4.1.4 Розпилюючі абсорбери

4.2 Апарати для адсорбції газових викидів

4.3 Установки термічного методу знешкодження газоподібних відходів

Висновки

Перелік посилань


ВСТУП

Атмосферне повітря – це газова оболонка Землі зі своїм певним відсотковим складом газів в повітряному середовищі, з основними складовими, такими як азот – 78%, і кисень – 20%. Але добре відомо,що атмосферне повітря певним чином зазнає впливу різних факторів, зокрема і забруднень. Нині, досить гострою залишається проблема забруднення повітряного басейну, яка була особливо характерною як у ХХ столітті, так і в наш час. Під забрудненням атмосфери розуміють потрапляння речовин будь-якого походження, які або не властиві природному складу атмосфери, або знаходяться в концентраціях, що значно відрізняються від свого природного вмісту в атмосфері, і які шкідливо впливають на живі організми та пригнічують їхню життєдіяльність. Основними джерелами забруднення атмосферного повітря є промислові підприємства та енергетичні системи; нафтопереробна і транспортна системи; металургійна промисловість, теплоенергетика та багато інших факторів антропогенного і природного походження.

Необхідність проведення роботи полягає у визначенні типів забруднюючих повітря речовин, класифікації забрудників, причини і джерела забруднень. Вбачаючи всі причини і види забруднень, необхідною умовою є застосування процесів і апаратів для знешкодження промислових газових викидів.

Практичне значення цієї теми полягає у впровадженні процесів очищення повітря від промислових газових викидів, переваги тих чи інших апаратних устаткувань на промислових підприємствах, різні типи і функціональні особливості апаратів.

Актуальність цієї теми є досить вагомою в теперішній час, оскільки промислово-індустріальний фактор досить широко чинить вплив, зокрема на атмосферне повітря, його складові і необхідним є більш широке впровадження газоочисних технологій, активно застосовувати їх на промислових підприємствах.

Метою цієї роботи є суть винайдення тенденції розумного підходу до

. очищення атмосферного повітря: при мінімальній затраті ресурсів, отримання ефективного результату щодо якнайоптимальнішого способу очищення повітря, вбачаючи її важливу значущість


1. ТИПИ ЗАБРУДНЮВАЧІВ ПОВІТРЯНОГО БАСЕЙНУ

Атмосфера – це повітряна оболонка Землі, яка має свої особливості в різних аспектах. Насамперед, повітряна оболонка Землі є однією з найголовніших умов життя. Атмосфера має велике екологічне значення. Вона захищає живі організми від згубного впливу космічних випромінювань та ударів метеоритів, є носієм тепла і вологи. Якби на Землі не існувало атмосфери, то добові коливання температури досягали б 200°С. Через атмосферу відбувається фотосинтез та обмін енергії та інформації — основні процеси в біосфері. Наявність атмосфери на планеті обумовлює ряд складних екзогенних процесів (вивітрювання гірських порід, діяльність повітряних мас і природних вод тощо). Для деяких організмів (бактерії, літаючі комахи, птахи та інші) атмосфера є основним середовищем життя.

Забрудненість — це несприятливі зміни стану атмосферного повітря, цілком або частково викликані діяльністю людини, які безпосередньо або опосередковано змінюють розподіл енергії, що надходить, рівні радіації, фізико-хімічні властивості атмосфери і умови існування живих організмів. Ступінь змін і масштаби наслідків залежать, по-перше, від інтенсивності й характеру самого забруднення, по-друге, стійкості атмосферного повітря до антропогенного навантаження. (1).

Проте, ще з екстенсивним розвитком народного господарства швидкими темпами зростали антропогенні викиди в атмосферу. Ще 60 років тому масштаби цих викидів були на декілька порядків меншими від їх природних надходжень в атмосферу. Тому існуючі в природі механізми утримання рівноваги та стабільності характеристик атмосфери істотно не порушувались. Однак за останні десятиріччя масштаби техногенних викидів наблизилися до їх природних надходжень або навіть перевищують їх. Крім того, відбуваються якісні зміни: в атмосферу викидається ще більша кількість речовин, яких там раніше не було або було в дуже малих кількостях. Тому в атмосфері не встигають сформуватися механізми очищення від них.

Атмосферне повітря характеризується певним чином неоднорідністю своїх складових, і завжди зазнає впливу оточуючого середовища в цілому. Добре відомо, що лише відносно постійними складовими атмосфери є азот (N2) – 78%, кисень (О2) – 21%. Але інший відсотковий склад відповідним чином містить в більшій чи меншій мірі певні газові компоненти, різноманітні забруднюючі речовини, домішки, аерозолі та інше. Слід відзначити основні особливості забруднюючих речовин і їх класифікацію:

1). Основні (критерійні) забруднювачі атмосфери - СО, SO2 оксиди азоту, вуглеводні, тверді частинки.

2). Поліциклічні ароматичні вуглеводні (ПАВ)

3). Сліди елементів (в основному метали)

4). Постійні гази (СО2, фтоpхлоpметани і ін.)

5). Пестициди

6). Абразивні тверді частинки (кварц, азбест і ін.)

7). Різноманітні забруднювачі, що надають багатобічну дію на організм (нітроза міни, озоносульфати, нітрати, кетон, альдегіди та інші.)

За походженням всі джерела забруднення атмосфери поділяють на природні та антропогенні. До природних джерел забруднення атмосфери відносять виверження вулканів, лісові пожежі, поверхні вивітрювання, також в деяких аспектах сюди відносяться космічний пил, сонячне та космічне випромінювання тощо. Серед основних джерел антропогенного забруднення особливу увагу слід приділяти викидам промислових підприємств та енергетичних систем та багато інших факторів.

Всі забруднювачі атмосферного повітря об*єднують в дві основні групи : - матеріальні та енергетичні.

В свою чергу, матеріальні забруднювальні атмосферу речовини поділяють на хімічно інертні (нетоксичні) та хімічно активні (токсичні). Токсичними називають такі інгредієнти, які при перевищенні певних граничнодопустимих концентрацій (ГДК) спричиняють загибель живих істот або пригнічують їхню життєдіяльність, в тому числі впливають на здоров*я людей. Нетоксичними є такі інгредієнти, які необхідні для розвитку живих організмів або вони не впливають на їхню життєдіяльність у межах певних концентрацій, що характерна для природного складу атмосферного повітря. Значне відхилення від меж природних концентрацій нетоксичних інгредієнтів може надавати негативного впливу на живі організми.

Забруднювальні атмосферу речовини класифікують на основі характеру впливу на живі організми. Виділяють п*ять основних груп забруднювальних речовин :

- загальносоматичні, які при певній кількісній дії можуть викликати отруєння всього організму, наприклад, оксид Карбону, пари Меркурію, неорганічні сполуки Плюмбуму, тощо;

- подразнювальні, які викликають подразнення дихальних шляхів та слизових оболонок, наприклад, оксиди Сульфуру та Нітрогену, озон, хлор, тощо;

- алергени або сенсибілізуючі, тобто хімічно інертні речовини, які здатні викликати алергії та шкіряні захворювання типу екзем, наприклад, нетоксичний пил, квітковий пилок, тощо;

- канцерогенні, які викликають появу злоякісних пухлин, наприклад, бенз(а)пірен, азбест, сполуки Хрому, радон, тощо;

- мутагенні, які викликають небажані мутації в живих організмах.

Відповідним чином ці всі фактори класифікуються на категорії по небезпечності.

В основі забруднення повітря, певним чином, наявні різні хімічні речовини.

Оксиди азоту утворюються переважно при високотемпературній фіксації азоту і кисню в силових установках і двигунах внутрішнього згорання. Оксид азоту утворюється при електричних розрядах в атмосфері і присутній у відпрацьованих газах автомобілів. Діоксид сірки утворюється при згоранні палива з високим вмістом сірки ( нафта, кам'яне вугілля).

Джерелами емісії цього токсичного газу є стаціонарні джерела горіння, наприклад СДЗ (85%-95%), промислові об’єкти (5-10%), двигуни внутрішнього згорання (2-7%).

Діоксид сіpки відносять до головних і найбільш важливим забруднювачам повітря, небезпечним для тварин і рослин, що бере участь в утворенні фотохімічного смогу. Загальна емісія діоксиду сірки в атмосферу складає 8-10 т в рік тобто значно перевершує надходження в атмосферу більшості інших токсичних хімічних речовин, і постійно зростає пpопоpційно зростанню споживання енергії.(2)

Чадний газ - найбільш небезпечний і надзвичайно розповсюджений з газоподібних забруднювачів повітря, токсичність якого обумовлена реакцією з гемоглобіном крові. Утворення СО відбувається при неповному згоранні різного палива. Природним джерелом СО є лісові пожежі і фотохімічне перетворення органічних сполук в атмосфері. Близько 25% СО антропогенного походження. Значна кількість чадного газу надходить в атмосферу міст і промислових регіонів з відпрацьованими газами автотранспорту.

Тверді частинки, що містяться в атмосфері, є пилом, піском, золою, сажею, вулканічний пил і аерозолі органічної (високомолекулярні сполуки) і неорганічної природи. Часто токсичність твердих частинок обумовлена адсорбцією на їх поверхні таких небезпечних сполук, як ПАВ або нітpозаміни.

Фотоксиданти утворюються в атмосфері при взаємодії реакцієздатних вуглеводнів і оксидів азоту під дією УФ - радіації. Зрештою утворюються високотоксичні речовини: пеpоксіацетилнітpат і ін.

Оксиданти забруднюють повітряний басейн більшості крупних міст світу, оскільки їх утворення пов'язане з розвитком промисловості і автотранспорту.

Наступна група забруднювачів - поліциклічні ароматичні вуглеводні (ПАВ) - можуть бути як первинними, так і вторинними забруднювачами атмосфери і зазвичай адсорбуються на твердих частинках. Багато які з ПАВ відрізняється вираженою канцерогенною, мутагенною і тератогенною дією і представляє серйозну загрозу для людини. Основним джерелом емісії ПАВ є ТЕЦ, що працюють на нафті або кам'яному вугіллі, а також підприємства нафтохімічної промисловості.

З декількох мільйонів відомих сполук лише близько 6000 перевірені на канцерогенну активність. В даний час встановлено, що 1500 хімічних сполук, що є потенційними забруднювачами атмосфери, володіють вираженими канцерогенними властивостями.

Вміст ПАВ і інших канцерогенних речовин, що потрапляють в атмосферу з викидами промислових підприємств, складає в великих індустріальних містах близько 80% від загального забруднення навколишнього середовища.

Кількості слідів хімічних елементів представлені в атмосфері такими високотоксичними забруднювачами, як миш'як, берилій, кадмій, свинець, магній і хром. Вони зазвичай присутні в повітрі у вигляді неорганічних солей, адсорбованих на твердих частинках.

Близько 60 металів ідентифіковано в продуктах згорання вугілля. У димових газах ТЕЦ виявлені ртуть, миш'як, барій, берилій, вісмут, бром, кадмій, хлор, кобальт, мідь, залізо, фтор, свинець, марганець, сурма молібден, нікель, селен, телур, хром, вольфрам, талій, олово, титан, уран, ванадій, цинк і цирконій.

Для більшості перерахованих елементів їх викид в атмосферу з димовими газами ТЕЦ складає від абсолютного рівня забруднення повітря всіма джерелами емісії цих елементів. При цьому максимальна кількість забруднювачів потрапляє в атмосферу при спалюванні вугілля. Hа частку цього джерела доводиться більше 95% твердих частинок, 85% оксидів сірки, 70% оксидів азоту і більше 90% слідів елементів від загальної кількості викидів для всіх ТЕЦ, що працюють на вугіллі, нафті і газі.

Скупчуючись в атмосфері, забруднювачі взаємодіють один з одним, гідролізуються і окислюються під дією вологи і кисню повітря, а також змінюють свій склад під впливом радіації. Внаслідок цього тривалість перебування забруднюючих домішок в атмосфері тісно пов'язана з їх хімічними властивостями. Велика тривалість перебування в повітрі малоактивних сполук наступної групи токсичності - постійних газів (фреони і діоксид вуглецю). З пестицидів, які зазвичай розпилюють з літаків, особливо токсичні фосфорорганічні пестициди, при яких в атмосфері утворюються продукти ще токсичніші, ніж початкові сполуки. (3)


2. ОСОБЛИВОСТІ ТА ОЦІНКА СТУПЕНЮ ЗАБРУДНЕННЯ АТМОСФЕРНОГО ПОВІТРЯ

Оцінка стану повітряного басейну, перш за все, включає визначення потенційної небезпеки його забруднення залежно від природно-кліматичних чинників конкретної території міста або району, що визначають здатність атмосфери розсіювати і адсорбувати шкідливі домішки. Це залежить від характеру турбулентного обміну і швидкості вітру, наявності туманів, рельєфу місцевості й інших чинників. Несприятливий характер розсіювання шкідливих речовин спостерігається, зокрема, при настанні температурних інверсій. Інверсії є таким станом атмосфери, при якому температура в приземному шарі повітря росте, а не падає, як це буває в звичайних умовах. При цьому нижня менш нагріта поверхня інверсійного шару унаслідок більшої щільності, грає роль екрану, від якого факел забруднюючих речовин відбивається до землі і розповсюджується на великі відстані.

Значне підвищення рівня забруднення повітряного басейну, як правило, спостерігається при застоюваннях повітря (поєднання слабких вітрів з приземними інверсіями температури) і штилях (низькі швидкості вітру в градації від 0 до 1 м/с). Такі метеорологічні умови характерні, наприклад, для районів гірських долин, де має місце скупчення щільнішого і холоднішого повітря в приземному шарі, часто спостерігається висока стійкість стану повітряних мас. У разі розташування в долинах промислових підприємств з шкідливими викидами, створюються небезпечні умови забруднення атмосфери. Позитивну роль в очищенні атмосфери грають інтенсивне перемішування повітряних мас, яке може складатися на тлі підвищених швидкостей вітру і інших чинників, а також осідання, що забезпечують вимивання домішок з атмосфери. (4)

Поєднання метеорологічних параметрів, що зумовлюють той або інший рівень забруднення повітряного басейну (концентрації домішок в приземному шарі повітря) для джерел з фіксованими параметрами викидів прийнято характеризувати величиною так званого "потенціалу забруднення повітря" (ПЗП).

В процесі оцінки забруднення повітряного басейну міста визначаються: основні джерела шкідливих викидів в повітряний басейн (промислові і енергетичні об'єкти, автотранспорт) і їх характеристики; райони міста з рівнем забруднення атмосферного повітря понад нормативний; соціально-економічна оцінка рівня забруднення атмосфери.

Для характеристики основних джерел шкідливих викидів в повітряний басейн за даними інвентаризації (форми статистичної звітності "2ТП-воздух") визначається кількісний і якісний склад шкідливих викидів, розраховується річний валовий викид всіх шкідливих речовин промисловими, енергетичними і транспортними джерелами в цілому по місту, дається ретроспективний аналіз викидів за 5-10 років. Оцінка забруднення атмосферного повітря міста і його окремих районів базується на розрахункових методах визначення концентрації шкідливих речовин і їх з'єднань в приземному шарі атмосферного повітря і встановленні ареалів їх розповсюдження на території, прилеглій до джерел викидів.

При оцінці забруднення атмосфери на розрахунковий термін враховуються не тільки кількість шкідливих речовин, що викидаються, при існуючих об'ємах промислового виробництва, але і передбачуване зростання його потужностей і об'ємів, можливі варіанти очищення, дані про зміну соціально-економічних показників і інфраструктури міста або району. Останніми роками широко використовуються уніфіковані програми розрахунку забруднення атмосфери (УПРЗА), наприклад програми типу "ефір", які дозволяють описати внесок в забруднення до 1000 і більш за джерела забруднення.

Результати забруднення повітряного басейну, отриманим на ЕОМ, є ізолінії рівних концентрацій окремих речовин або груп. Шляхом графічного поєднання схем розподілу концентрацій окремих речовин або груп на території міста складається підсумкова карта районування міських територій по забрудненню повітряного басейну. Такі карти виконуються на опорній схемі міста в масштабі 1:25000. На карті виділяють території з наднормативним рівнем забруднення, а також показують місця розташування основних джерел шкідливих викидів.(5)

Рівні забруднення повітряного басейну в ході проведення розрахунків можуть бути описані або в натуральних показниках - концентраціях шкідливих речовин (мг/м3), або в нормованих показниках, що характеризують кратність перевищення ГДК. Оскільки на окремих ділянках території міста концентрації шкідливих речовин можуть у декілька разів перевищувати нормативи ГДК, вводять додаткову оцінку забруднення по ступенях небезпеки для здоров'я населення. Використовується умовний індекс "Р", що характеризує ступінь небезпеки забруднення для одного компоненту або для суми шкідливих речовин з урахуванням кратності перевищення ГДК і класу небезпеки речовини.

ГДК - такі концентрації, які на людину і її потомство, не чинять прямої або непрямої дії, не погіршують працездатність, самопочуття, а також санітарно-побутових умов життя людей. Узагальнення всієї інформації по ГДК, що отримується всіма відомствами, здійснюється в ГГО - Головній Геофізичній Обсерваторії. Щоб за наслідками спостережень визначити значення повітря, зміряні значення концентрацій порівнюють з максимальною разовою гранично допустимою концентрацією і визначають число випадків, коли були перевищені ГДК, а також в скільки разів найбільше значення було вище за ГДК. Середнє значення концентрації за місяць або за рік порівнюється з ГДК тривалої дії - середньостійкої ГДК. Стан забруднення повітря декількома речовинами, спостережувані в атмосфері міста, оцінюється за допомогою комплексного показника - індексу забруднення атмосфери (ІЗА). Для цього нормовані на відповідні значення ГДК і середні концентрації різних речовин за допомогою нескладних розрахунків приводять до величини концентрацій сірчистого ангідриду, а потім підсумовують.

Ступінь забруднення повітря основними забруднюючими речовинами знаходиться в прямій залежності від промислового розвитку міста. Найбільші максимальні концентрації характерні для міст з чисельністю населення більше 500 тис. жителів. Забруднення повітря специфічними речовинами залежить від виду промисловості, розвиненої в місті. Якщо в крупному місті розміщені підприємства декількох галузей промисловості, то створюється дуже високий рівень забруднення повітря, проте проблема зниження викидів багатьох специфічних речовин до цих пір залишається невирішеною.

Результатом оцінки може з'явитися виділення на території міста зон з "допустимим", "слабким", "помірним" і "сильним" рівнем забрудненням.

При визначенні чинників, обумовлюючих той або інший стан атмосферного повітря, приймаються до уваги особливості планування і забудови міста в цілому і його окремих елементів (орієнтація і профілі вулиць, що формують аераційний режим на міській території, вплив відкритих, забудованих і таких, що озеленюють просторів на характер руху і турбулентний режим повітряних потоків і ін.).(6)

Випробування атмосферного повітря повинне здійснюватися у складі досліджень на стаціонарних, маршрутних і пересувних постах спостереження. Методики вимірювання ступеня забрудненості повітря, перелік забруднюючих компонентів і значення їх ГДК для повітря селітерної і виробничої зон приведені до відповідних нормативних и методичних документів.

Забруднення атмосферного повітря може оцінюватися як за даними інструментальних вимірів (або відбору проб для подальших лабораторних аналізів) в житловій забудові населених місць, на промислових майданчиках, на межі СЗЗ і в повітрі робочої зони виробничих ділянок підприємств, так і за розрахунковими даними для найсприятливіших і найбільш вірогідних умов з урахуванням показників фонового забруднення атмосфери на сучасних комп'ютерних моделях.


3. СУТЬ МЕТОДІВ ОЧИСТКИ ПРОМИСЛОВИХ ГАЗОВИХ ВИКИДІВ

В даний час розроблено і випробувано в промисловості велика кількість різних методів очищення газів від технічних забруднень: NOx, SO2, H2S, NH3, оксиду вуглецю, різних органічних і неорганічних речовин. (8)

Опишемо ці основні методи і вкажемо їх переваги і недоліки.

3.1 Абсорбційний метод

Абсорбція є процесом розчинення газоподібного компоненту в рідкому розчиннику. Системи абсорбції розділяють на водні і неводні. У другому випадку застосовують зазвичай малолетючі органічні рідини. Рідину використовують для абсорбції тільки один раз або ж проводять її регенерацію, виділяючи забруднювач в чистому вигляді. Схеми з одноразовим використанням поглинача застосовують в тих випадках, коли абсорбція приводить безпосередньо до отримання готового продукту або напівпродукту. Як приклади можна назвати:

· отримання мінеральних кислот (абсорбція SO3 у виробництві сірчаної кислоти, абсорбція оксидів азоту у виробництві азотної кислоти);

· отримання солей (абсорбція оксидів азоту лужними розчинами з отриманням нітрит-нітратних лугів, абсорбція водними розчинами винищити або вапняку з отриманням сульфату кальцію);

· інших речовин (абсорбція NH4 водою для отримання аміачної води і ін.).

Схеми з багатократним використанням поглинача (циклічні процеси) поширені ширше. Їх застосовують для уловлювання вуглеводнів, очищення від SO2 димових газів ТЕС, очищення вентгазів від сірководню залізно-содовим методом з отриманням елементарної сірки, моноетаноламінового очищення газів від CO2 в азотній промисловості.

Залежно від способу створення поверхні зіткнення фаз розрізняють поверхневі, барботажні і розпилюючі апарати абсорбції.

У першій групі апаратів поверхнею контакту між фазами є дзеркало рідини або поверхня текучої плівки рідини. Сюди ж відносять абсорбенти насадок, в яких рідина стікає по поверхні завантаженої в них насадки з тіл різної форми.

У другій групі абсорбентів поверхня контакту збільшується завдяки розподілу потоків газу в рідину у вигляді бульбашок і струменів. Барботаж здійснюють шляхом пропускання газу через заповнений рідиною апарат або в апаратах колонного типу з тарілками різної форми.

У третій групі поверхня контакту створюється шляхом розпилювання рідини в масі газу. Поверхня контакту і ефективність процесу в цілому визначається дисперсністю розпиленої рідини.

Найбільшого поширення набули насадки (поверхневі) і барботажні тарілчасті абсорбери. Для ефективного застосування водних середовищ абсорбції компонент, що видаляється, повинен добре розчинятися в середовищі абсорбції і часто хімічно взаємодіяти з водою, як, наприклад, при очищенні газів від HCl, HF, NH3, NO2. Для абсорбції газів з меншою розчинністю (SO2, H2S) використовують лужні розчини на основі NAOH або Ca(OH)2. Добавки хімічних реагентів у багатьох випадках збільшують ефективність абсорбції завдяки протіканню хімічних реакцій в плівці. Для очищення газів від вуглеводнів цей метод на практиці використовують значно рідше, що обумовлене, перш за все, високою вартістю абсорбентів. Загальними недоліками методів абсорбції є утворення рідинних стоків і громіздкість апаратурного оформлення. (8).

3.2 Адсорбційний метод

Адсорбційний метод є одним з найпоширеніших засобів захисту повітряного басейну від забруднень. Основними промисловими адсорбентами є активоване вугілля, складні оксиди і імпрегновані сорбенти. Активоване вугілля (АВ) нейтральне по відношенню до полярних і неполярних молекул адсорбованих з'єднань. Воно менш селективне, чим багато інших сорбентів, і є одним з небагатьох, придатних для роботи у вологих газових потоках. Активоване вугілля використовують, зокрема, для очищення газів від речовин з неприємним запахом, рекуперації розчинників і т.д.

Оксидні адсорбенти (ОА) володіють вищою селективністю по відношенню до полярних молекул через власний неоднорідний розподіл електричного потенціалу. Їх недоліком є зниження ефективності у присутності вологи. До класу ОА відносять силікагелі, синтетичні цеоліти, оксид алюмінію.

Можна виділити наступні основні способи здійснення процесів адсорбційного очищення:

· Після адсорбції проводять десорбцію і витягують уловлені компоненти для повторного використання. У такий спосіб уловлюють різні розчинники, сірковуглець у виробництві штучних волокон і ряд інших домішок.

· Після адсорбції приміси не утилізовують, а піддають термічному або каталітичному допалюванню. Цей спосіб застосовують для очищення газів хіміко-фармацевтичних і лакофарбових підприємств, харчової промисловості і ряду інших виробництв. Даний різновид адсорбційного очищення економічно виправданий при низьких концентраціях забруднюючих речовин і (або) багатокомпонентних забруднювачів.

· Після очищення адсорбент не регенерують, а піддають, наприклад, похованню або спалюванню разом з міцно хемосорбційним забруднювачем. Цей спосіб придатний при використанні дешевих адсорбентів.

Для десорбції домішок використовують нагрівання адсорбенту, вакуумування, продування інертним газом, витіснення домішок більш речовиною, що легко адсорбується, наприклад, водяною парою. Останнім часом особливу увагу приділяють десорбції домішок шляхом вакуумування, при цьому їх часто вдається легко утилізувати.

Для проведення процесів адсорбції розроблена різноманітна апаратура. Найбільш поширені адсорбери з нерухомим шаром гранульованого або стільникового адсорбенту. Безперервність процесів адсорбції і регенерації адсорбенту забезпечується застосуванням апаратів з киплячим шаром.

Останніми роками все більш широке застосування отримують волокнисті сорбційно-активні матеріали. Мало відрізняючись від гранульованих адсорбентів по своїх характеристиках місткостей, вони значно перевершують їх по ряду інших показників. Наприклад, їх відрізняє вища хімічна і термічна стійкість, однорідність пористої структури, значний об'єм мікропор і вищий коефіцієнт вагопередачі (у 10-100 разів більше, ніж у сорбційних матеріалів). Установки, в яких використовуються волокнисті матеріали, займають значно меншу площу. Маса адсорбенту при використанні волокнистих матеріалів менша, ніж при використанні АУ в 15-100 разів, а маса апарату в 10 разів. Опір шару не перевищує при цьому 100 Па.

Підвищити техніко-економічні показники існуючих процесів вдається також шляхом оптимальної організації стадії десорбції, наприклад, за рахунок програмованого підйому температури.

Слід зазначити, що ефективність очищення на активованому вугіллі стільникової (комірчастою) структури, володіє покращеними гідравлічними характеристиками. Такі сорбенти можуть бути отримані нанесенням певних композицій з порошком АУ на спінену синтетичну смолу або спінюванням суміші заданого складу, що містить АУ, а також випалюванням наповнювача з суміші, що включає АУ разом з тим, що пов'язує.

Ще одним напрямом удосконалення адсорбційних методів очищення є розробка нових модифікацій адсорбентів – силікагелей і цеолітів, що володіють підвищеною термічною і механічною міцністю. Проте гідрофільність цих адсорбентів утрудняє їх застосування.(11).

Найбільшого поширення набули адсорбційні методи витягання з газів, що відходили, розчинників, зокрема хлорорганічних. Це пов'язано з високою ефективністю процесу очищення газів (95-99%), відсутністю хімічних реакцій утворення вторинних забруднювачів, швидкою окуповуваністю установок (зазвичай 2-3 року) рекуперацій, завдяки повторному використанню розчинників і тривалим (до 10 років) терміном служби. Ведуться активні роботи по адсорбційному витяганню з газів оксидів сірки і азоту.

Адсорбційні методи є одним з найпоширеніших в промисловості способів очищення газів. Їх застосування дозволяє повернути у виробництво ряд цінних з'єднань. При концентраціях домішок в газах більше 2-5 мг/м2, очищення виявляється навіть рентабельним. Основний недолік адсорбційного методу полягає у великій енергоємності стадій десорбції і подальшого розділення, що значно ускладнює його застосування для багатокомпонентних сумішей.

3.3 Термічне допалювання

Допалювання є метод знешкодження газів шляхом термічного окислення різних шкідливих речовин, головним чином органічних, в практично нешкідливих або менш шкідливих, переважно СО2 і Н2О. Звичайні температури допалювання для більшості з'єднань лежать в інтервалі 750-1200 °C. Застосування термічних методів допалювання дозволяє досягти 99%-ого очищення газів.

При розгляді можливості і доцільності термічного знешкодження необхідно враховувати характер продуктів горіння, що утворюються. Продукти спалювання газів, що містять з'єднання сірки, галогенів, фосфору можуть перевершувати по токсичності початковий газовий викид. В цьому випадку необхідне додаткове очищення. Термічне допалювання є вельми ефективним при знешкодженні газів, що містять токсичні сполуки у вигляді твердих включень органічного походження (сажа, частинки вуглецю, деревного пилу і т.д.).

Найважливішими чинниками, що визначають доцільність термічного знешкодження, є витрати енергії (палива) для забезпечення високих температур в зоні реакції, калорійність знешкоджуваних домішок, можливість попереднього підігріву газів, що очищаються. Підвищення концентрації допалюваних домішок веде до значного зниження витрати палива. В окремих випадках процес може протікати в автотермічному режимі, тобто робочий режим підтримується тільки за рахунок тепла реакції глибокого окислення шкідливих домішок і попереднього підігріву початкової суміші знешкоджуваними газами, що відходять.

Принципову трудність при використанні термічного допалювання створює утворення вторинних забруднювачів, таких як оксиди азоту, хлор, SO2 і ін. (8).

Термічні методи широко застосовуються для очищення відхідних газів, від токсичних горючих з'єднань. Розроблені останніми роками установки допалювання відрізняються компактністю і низькими енерговитратами. Застосування термічних методів ефективне для допалювання пилу багатокомпонентних і запилених газів, що відходять.

3.4 Термокаталітичні методи

Каталітичні методи газоочистки відрізняються універсальністю. З їх допомогою можна звільняти гази від оксидів сірки і азоту, різних органічних сполук, монооксиду вуглецю і інших токсичних домішок. Каталітичні методи дозволяють перетворювати шкідливі домішки в нешкідливі, менш шкідливі і навіть корисні. Вони дають можливість переробляти багатокомпонентні гази з малими початковими концентраціями шкідливих домішок, добиватися високих ступенів очищення, вести процес безперервно, уникати утворення вторинних забруднювачів. Застосування каталітичних методів найчастіше обмежується трудністю пошуку і виготовлення придатних для тривалої експлуатації і достатньо дешевих каталізаторів. Гетерогенно-каталітичне перетворення газоподібних домішок здійснюють в реакторі, завантаженому твердим каталізатором у вигляді пористих гранул, кілець, кульок або блоків із структурою, близькою до стільникової. Хімічне перетворення відбувається на розвиненій внутрішній поверхні каталізаторів, що досягає 1000 м2/г.

В якості ефективних каталізаторів, що знаходять застосування на практиці, служать самі різні речовини – від мінералів, які використовуються майже без всякої попередньої обробки, і простих масивних металів до складних з'єднань заданого складу і будови. Зазвичай каталітичну активність проявляють тверді речовини з іонними або металевими зв'язками, що володіють сильними міжатомними полями. Одна з основних вимог, що пред'являються до каталізатора, - стійкість його структури в умовах реакції. Наприклад, метали не повинні в процесі реакції перетворюватися на неактивні з'єднання. (8)

Сучасні каталізатори знешкодження характеризуються високою активністю і селективністю, механічною міцністю і стійкістю до дії отрут і температур. Промислові каталізатори, що виготовляються у вигляді кілець і блоків стільникової структури, володіють малим гідродинамічним опором і високою зовнішньою питомою поверхнею.

Найбільшого поширення набули каталітичні методи знешкодження газів, що відходили, в нерухомому шарі каталізатора. Можна виділити два принципово різних методу здійснення процесу газоочистки - в стаціонарному і в штучно створюваному нестаціонарному режимах.

1. Стаціонарний метод.

Прийнятні для практики швидкості хімічних реакцій досягаються на більшості дешевих промислових каталізаторів при температурі 200-600 °C. Після попереднього очищення від пилу (до 20 мг/м3) і різних каталітичних отрут (As,Cl2 і ін.), гази зазвичай мають значно нижчу температуру.

Підігрів газів до необхідних температур можна здійснювати за рахунок введення гарячих димових газів або за допомогою електропідігрівача. Після проходження шару каталізатора очищені гази викидаються в атмосферу, що вимагає значних енерговитрат. Добитися зниження енерговитрат можна, якщо тепло відхідних газів, використовувати для нагрівання газів, що поступають в очищення. Для нагріву слугують зазвичай рекуперативні трубчасті теплообмінники.

За певних умов, коли концентрація горючих домішок в газах, що відходять, перевищує 4-5 г/м3, здійснення процесу по схемі з теплообмінником дозволяє обійтися без додаткових витрат.

Такі апарати можуть ефективно працювати тільки при постійних концентраціях (витратах) або при використанні довершених систем автоматичного управління процесом.

Ці труднощі вдається подолати, проводячи газоочистку в нестаціонарному режимі.

2. Нестаціонарний метод ( реверс-процес).

Реверс-процес передбачає періодична зміна напрямів фільтрації газової суміші в шарі каталізатора за допомогою спеціальних клапанів. Процес проходить наступним чином. Шар каталізатора заздалегідь нагрівають до температури, при якій каталітичний процес протікає з високою швидкістю. Після цього в апарат подають очищений газ з низькою температурою, при якій швидкість хімі