Скачать

Когрентність другого порядку як об’єкт експериментального дослідження

`Зміст

Вступ

1. Когерентність, сутність когерентності 2-го порядку

2. Вимірювання когерентності

2.1 Дослід Юнга( 1-го порядку)

2.2 Дослід Брауна-Твіса

2.3 Лічба фотонів

3. Явища в квантовій оптиці, які базуються на когерентності 2-го порядку

Висновок

Список літератури


Вступ

До 1981 року рівняння для функції когерентності другого порядку вирішувалося лише в безабераційном наближенні. Чисельне вирішення даного рівняння з використанням методу кінцевих різниць пов'язане з великими труднощами. У загальному випадку дане рівняння має п'ять незалежних змінних. Недостатня ефективність даних алгоритмів дозволила вирішити лише завдання з осьовою симетрією і для пучків у вигляді безконечної смуги, для яких число незалежних

Широке поширення для дослідження завдання поширення частково когерентного випромінювання отримало вирішення рівняння перенесення випромінювання (УПІ) Фур'є - зв'язаного рівняння для функції когерентності. Вперше для завдання нелінійного поширення випромінювання в атмосфері дане рівняння було отримане в роботах. Воно також як і рівняння для функції когерентності має п'ять незалежних змінних і його точне чисельне рішення є проблематичним. Для його вирішення авторами використовувалося безабераційне наближення і метод фазового екрану. Точне чисельне вирішення даного рівняння було отримане лише для завдання з осьовою симетрією. У зв'язку з цим встала необхідність розробки асімптотики точних методів рішення задачі. Дослідження в цій області привели до появи ряду наближених асимптотичних методів вирішення УПІ, що зводять рівняння похідних в п'ятимірному просторі до системи звичайних диференціальних рівнянь.

Таким чином, для дослідження завдання поширення частково когерентного випромінювання в неоднорідних середовищах виникає необхідність створення методів і алгоритмів, що дозволяють виконати теоретичне моделювання поширення випадкового хвилевого поля при взаємному впливі ефектів, супроводжуючих поширення випромінювання: дифракцію, рефракцію на неоднорідному розподілі показника заломлення, рефракцію на неоднорідному розподілі коефіцієнта поглинання (посилення), неоднорідність поглинання (посилення) енергії випромінювання в поперечному перетині пучка, турбулентне розширення пучка.

Метою курсової роботи є дослідження характеристик частково когерентного лазерного випромінювання, що поширюється в регулярно і випадково неоднорідних (лінійних і нелінійних) середовищах.

Для досягнення заданої мети передбачається вирішення наступних основних завдань:

- Дослідження теоретичних методів когерентності та когерентності другого порядку.

- Вживання даних методів і алгоритмів для дослідження поширення частково когерентного випромінювання.

- Дослідження залежності енергетичних і когерентних властивостей вихідного випромінювання, а також закономірностей поширення когерентного і частково когерентного лазерного випромінювання в неоднорідний поглинаючих (що підсилюють) середовищах від розподілів оптичних характеристик неоднорідного активного середовища.


1. Когерентність, сутність когерентності 2-го порядку

Когерентність (рос. когерентность, англ. coherence, нім. Kohärenz f) — це властивість хвилі зберігати свої частотні, поляризаційні й фазові характеристики.

Здатність до інтерференції, яку виявляють за певних умов хвилі, зокрема світлові. Умовою когерентності хвиль є незмінюваність у часі різниці між фазами коливань у них, що можливо лише тоді, коли хвилі мають однакову довжину (частоту).

Завдяки когерентності хвиль виникають інтерференційні явища.

Поняття плоскої монохроматичної хвилі, яке часто використовується в фізиці є абстракцією. Реальні хвилі, які випромінюються реальними джерелами, насправді є скінченими хвильовими пакетами. Кожне джерело випромінює свої особливі хвилі, які розрізняються настільки ж, наскільки різняться відбитки пальців людей. Однак, для спостереження інтерференції необхідно, щоб хвиля зберігала самоподібність. Така самоподібність хвилі описується терміном когерентність.

Наприклад, для отримання двох когерентних між собою променів у оптиці використовують розділення початкового променя світла. Один із способів зробити це - поставити на шляху променя плоскопаралельну пластинку. Частина світла буде відбиватися від пластинки, а частина проходити далі. Використовуючи лінзи та дзеркала можна спрямувати розділені промені так, щоб вони знову перетиналися, подолавши різний шлях. Тоді, внаслідок різниці ходу променів, виникає інтерференційна картина.

Термін когерентність використовується також для хвильових функцій у квантовій механіці.(2)

Під когерентністю розуміють узгоджене протікання в часі і в просторі декількох хвильових процесів, що проявляються при їх додаванні. Для когерентних світлових хвиль з постійною або зміною по певному закону різницею фаз виникає характерна інтерференційна картина. Якщо порівнювати фази однієї і тієї ж світлової хвилі в різні моменти часу які розділяються інтервалом τ то при достатньо великому значенню τ випадкове змінення фаз може перевищити π. Це означає, що через деякий час хвиля "втрачає свою пам`ять", тобто забуває значення початкової фази. Тобто вона стає не когерентною сама до себе. Для кількісної характеристики цього явища вводять функцію R(